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ABSTRACT

Computational modeling of plasma etching processes at the feature scale relevant to the fabrication of nanometer semiconductor devices
is critically dependent on the reaction mechanism representing the physical processes occurring between plasma produced reactant fluxes
and the surface, reaction probabilities, yields, rate coefficients, and threshold energies that characterize these processes. The increasing
complexity of the structures being fabricated, new materials, and novel gas mixtures increase the complexity of the reaction mechanism
used in feature scale models and increase the difficulty in developing the fundamental data required for the mechanism. This challenge is
further exacerbated by the fact that acquiring these fundamental data through more complex computational models or experiments is
often limited by cost, technical complexity, or inadequate models. In this paper, we discuss a method to automate the selection of funda-
mental data in a reduced reaction mechanism for feature scale plasma etching of SiO2 using a fluorocarbon gas mixture by matching pre-
dictions of etch profiles to experimental data using a gradient descent (GD)/Nelder–Mead (NM) method hybrid optimization scheme.
These methods produce a reaction mechanism that replicates the experimental training data as well as experimental data using related
but different etch processes.

Published under an exclusive license by the AVS. https://doi.org/10.1116/6.0003554

I. INTRODUCTION

The computational modeling of plasma etching processes is
receiving new interest due, in part, to its ability to aid in the design
and understanding of semiconductor device manufacturing and to
provide the training data for machine learning (ML) based optimi-
zation of processes.1–5 In simulation of plasma etching, the frame-
work typically includes a reactor scale model and a feature scale
model.6–8 The reactor scale model provides reactive fluxes to the
wafer, including their energy and angular distributions (EADs),
that are used as input to the feature scale model.9,10 There are several
classes of feature scale models—level-set methods,6,11–13 statisti-
cal voxel approaches,14–16 and molecular dynamics (MD).17,18

Although MD methods are the most fundamental, they are currently
computationally limited in the size of the feature that can be simu-
lated and by the availability of interparticle potentials for complex
chemistries. As a result, most full-feature scale capable models
employ level set or statistical voxel methods with, in most cases, less
fundamental reaction mechanisms.

Due to limits resulting from computational complexity and
sometimes incomplete understanding of the physical process involved
in plasma etching, feature profile simulations typically make use of
simplified or reduced reaction mechanisms. These mechanisms use
rate coefficients, reaction probabilities, threshold energies, and energy
and angular scaling to represent reactions between gas phase and
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surface species. The outcomes of these reactions are the addition of
material (deposition), removal of material (etching or sputtering),
and modification of the material (passivation, implantation).15,19,20

The reaction mechanism and the coefficients and parameters that
quantify the mechanism are ideally based either on experiments or
more complex computational models that do not allow for an effi-
cient real-time evaluation.

Rapidly and accurately producing reaction mechanisms for
profile simulation for novel materials, gas mixtures, and tempera-
ture regimes, as in cryogenic etch processes,21–23 is challenging.
This is particularly the case in data starved regimes, which is often
the case when addressing new materials. So, there is a need to
robustly and efficiently adjust and improve reaction mechanisms.
Classical optimization techniques as well as ML based approaches
are areas of active research.4,5,24–26

Developing and applying ML techniques for process design is
an expanding area of research with the goal of addressing the
increasing number of process parameters, complexity of the pro-
cesses, and nonlinear behavior. Model-based feedback has enabled
precise, repeatable, and stable process control.27–29 As the control
models face some of the same issues with respect to data availabil-
ity and consistency as in profile evolution, control methods are
now also based on machine learning methods that efficiently allow
for rapid real-time evaluation.30–34 Other applications of ML
include the development of surrogate methods where statistical
models are trained on experimental or computed data to simulate a
process as a whole or a subprocess.35,36 Such practices are being
applied to large scale simulations of fusion plasmas.37–43 Ideally,
these models applied in semiconductor manufacturing are capable
of reproducing reactor and feature scale etch processes either
directly as an outcome of the surrogate model or by interpolating
between known results.44,45 These types of approaches have under-
lying model structures that are typically valid in their training
parameter space. However, the parameters that are the outcome of
the underlying model, while providing a solution, do not necessar-
ily provide physical insight. Many of these data driven ML
approaches are themselves fundamentally limited by the availability
or accuracy of the data used for training purposes. Producing these
data is itself costly and time consuming, while the resulting trained
ML based model may have limited applicability to process condi-
tions outside the training set.

The challenge of needing large training sets of data has led to
the use of physics informed ML and optimization techniques.
Using these techniques, the lack of data is, to some degree, miti-
gated by the explicit use of physical formulations and models to
reduce the degrees of freedom in the ML-derived model. Using this
approach, a reaction mechanism can be built using known forms of
probabilities of gas–surface interactions, which may have poorly
known coefficients. Using ML methods to derive the physics-based
coefficients should, in principle, produce a reaction mechanism
that extends beyond the conditions of the training set.

These challenges specifically apply to the modeling of high
aspect ratio (HAR) plasma etch processes.46–49 The aspect ratio
(AR) is the ratio of the etch depth to the width of the feature, often
given by the opening of the mask material. These processes are rel-
evant to the fabrication of vias, contact holes, and isolation
trenches.48 Features are now produced for three-dimensional (3D)

memory devices having AR approaching 100. Ideal HAR features
have vertical side walls with widths replicating the mask with a
minimum of bowing50 or tapering.51 There are many process-
dependent challenges that make these outcomes difficult. For
example, polymer deposition is a critical process in dielectric
plasma etching in fluorocarbon gas mixtures.52,53 A critical process
challenge is the control polymer deposition in the upper regions of
the mask during the etch process, which may result in necking and
clogging.44,54,55 (Necking is the narrowing of the opening in the
mask by polymer deposition. Clogging is closing of the mask
opening by the deposition.) Both necking and clogging result from
the same process with different degrees of severity. Clogging will
stop etching, while necking can limit neutral gas transport further
into the feature, trap etched surface species, and shadow ions and
photons entering into the feature. Modeling these processes, critical
to feature optimization, is additionally challenged by the lack of
fundamental data.

Physics informed ML approaches to process development
have also taken the form of compact or reduced models. For
example, through ML methods, reduced reaction mechanisms
can be generated.56–58 In a reduced reaction mechanism, species
or reactions for which the outcome is weakly dependent are
removed from a comprehensive mechanism, resulting in a model
that is computationally more efficient. Reduced reaction mecha-
nisms, though more rapidly executing, are generally valid over a
limited range of operations, such as power, gas mixture, or
pressure.

The optimization of the reaction mechanism itself has been
investigated using Monte Carlo approaches and simulations based
on cellular automatons.59–63 Optimization schemes such as evolu-
tionary algorithms and particle swarm methods can require many
evaluations of the model. These large number of evaluations can lead
to large computational expenses or needing to reduce the domain
over which the optimization is being performed, either spatially or in
terms of interaction complexity (e.g., limiting the number of species).

In this paper, we discuss the development and application of a
semi-autonomous optimization technique to derive physics-based
coefficients for reaction mechanisms used in voxel-based feature
simulation of plasma etching. The optimization technique couples a
gradient descent method with a Nelder–Mead approach. The dem-
onstration system is SiO2 HAR plasma etching in a fluorocarbon gas
mixture using a capacitively coupled plasma (CCP). The reactor scale
simulations that provide reactant fluxes were performed with the
Hybrid Plasma Equipment Model (HPEM). The feature scale simu-
lations were performed with the Monte Carlo Feature Profile Model
(MCFPM).

A high-level overview of the optimization scheme is given in
Sec. II. The process to be optimized and the simulation tools used
for the gas phase and feature scale simulation are discussed in
Secs. III and IV. Metrics for the optimization process are defined
in Sec. V. The optimization schemes are described in Secs. VI
and VII where the hybrid approach is motivated. Results of the
combined optimization method are discussed in Sec. VIII. To test
the transferability of the derived mechanism, etch processes outside
the original training regime were simulated, with those results being
presented in Sec. IX for a single feature and for an array of features
in Sec. X. Concluding remarks are given in Sec. XI.

ARTICLE pubs.aip.org/avs/jva

J. Vac. Sci. Technol. A 42(4) Jul/Aug 2024; doi: 10.1116/6.0003554 42, 043008-2

Published under an exclusive license by the AVS

 29 June 2024 17:28:28

https://pubs.aip.org/avs/jva


II. DESCRIPTION OF THE OPTIMIZATION SCHEME

The goal of this work is to optimize a reaction mechanism that
describes plasma–surface interactions for SiO2 etching that best repli-
cates experimental data. The experimental data were provided in the
form of scanning electron microscopy (SEM) images. Optimization
is centered on adjusting physics parameters in the reaction mecha-
nism, represented by scalar values pi, each representing a physical
quantity, contained in a parameter set of dimension n,

p ¼

p1
p2

..

.

pn

0
BBB@

1
CCCA: (1)

The size of the parameter space scales like O(cn), where c is a
constant, making exhaustive search algorithms impractical for even
moderately large numbers of parameters. Enforcing constraints and
relations based on prior physical knowledge of the likely range of pi
can help to reduce the total parameter space and enable the use of
conventional optimization techniques. This physical knowledge is, in
our case, implemented by using a well-established surface reaction
mechanism having poorly known reaction probabilities and applying
physically reasonable bounds to those poorly known coefficients.

The optimization scheme is based on a hybrid approach, com-
bining a gradient descent method5,64,65 with a Nelder–Mead opti-
mization scheme.66–68 A top-level overview of the method is shown
in Fig. 1. The optimization setup requires external inputs (located
on the left-hand side of Fig. 1), which in this case are the reactant
fluxes of radicals and ions and their EADs that are incident onto
the wafer being processed. These fluxes and EADs were provided
by the HPEM using reactor conditions that produced the features
imaged by the SEMS. The fluxes and EADs provided by the HPEM
are here considered as being ground truth. A legitimate issue is
the sensitivity of the optimized feature scale reaction mechanism
to the accuracy of the fluxes and EADs provided by the HPEM.
The HPEM, as for all modeling and simulation approaches, is

subject to approximations and simplifications. This applies to its
fluid approach and finite grid size, as well as the input data in
terms of reaction rates, cross sections, and material coefficients.
Although the quantitative validity of the HPEM and related
approaches in general is an important area of discussion, it is
beyond the scope of this particular investigation, which is focused
on developing the feature scale reaction mechanism. As such, the
fluxes and EADs from the HPEM are treated as being true for the
purposes of this discussion, which is intended to be a proof of
concept of the optimization process itself. That said, the results
presented below will highlight the ability of HPEM and MCFPM
in conjunction to replicate relevant process trends. Details of the
experiment and gas phase simulation are provided in Sec. III.

The gas phase fluxes and EADS are used as input to the
MCFPM, which performs the etch process simulations outlined in
Sec. IV. The results of these simulations are compared to the features
in the SEM images. Based on a set of geometric metrics, discussed in
Sec. V, a model error is determined. The data produced by the
MCFPM and their differences to experimental data effectively act as
the loss function to be minimized. The model error is used as the
basis for the optimizer, which iteratively adjusts the model parame-
ters p to minimize the loss. This loop is repeated until the system
converges.

III. REACTOR SCALE PLASMA SIMULATION

The reactor scale, gas phase simulations were performed using
the HPEM, which combines fluid and kinetic concepts to model a
diverse set of plasma processes. The HPEM is described in detail in
Refs. 69–71 and so will be only briefly described here.

The HPEM is a two-dimensional plasma hydrodynamics model
that employs both kinetic and fluid formulations to simulate low
temperature plasmas using a time-slicing approach. A range of
physics regimes are addressed in individual modules. These modules
are coupled through the exchange of physical quantities—such as
electric and magnetic fields, species densities, and rate coefficients.
The modules used in this work are the Fluid Kinetics-Poisson
Module (FKPM), the Electron Energy Transport Module (EETM),
and the Plasma Chemistry Monte Carlo Module (PCMCM).

In the FKPM, the continuity, momentum, and energy equa-
tions of heavy particles are integrated in conjunction with Poisson’s
equation, yielding heavy particle densities, fluxes, temperatures,
and electrostatic potential. Electron transport is determined by
solving the continuity and momentum conservation equations. In
the EETM, electron energy distributions (EEDs) as a function of
spatial position are obtained using a kinetic, Monte Carlo method
based on the electric fields produced in the FKPM. The EADs of
electrons striking the substrate are also recorded in the EETM.
Based on the bulk plasma electron distributions, their transport
and rate coefficients are produced and made available to the other
modules.

After reaching a (quasi) steady state, the PCMCM calculates
the heavy particle EADs incident onto surfaces by tracking their
trajectories kinetically and treating gas phase collision using a
Monto Carlo approach. These distributions are recorded and then
used as input to the MCFPM.

FIG. 1. Global schematic of the optimization process.
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The HPEM was used to model a CCP sustained in a C4F6/Ar/O2

gas mixture at 10mTorr. In the base case, the total gas flows were
C4F6/Ar/O2 = 140/100/105 SCCM. The reactor configuration is shown
in Fig. 2. Two electrodes with a radius of 15 cm are separated by a
4 cm gap. Dual radio frequency (RF) power is applied to the bottom
electrode. The voltage waveform consists of low and high frequency
components, VRF(t) = VLF sin(2πfLFt) + VHF sin(2πfHFt) with
fLF = 1MHz and f HF = 40MHz. For the base case, the low frequency
voltage VLF and high frequency voltage VHF were adjusted to supply
powers of PLF = 8.0 kW and PHF= 2.5 kW. A negative DC bias of
−500V was applied to the top electrode to deliver 650W. The gas
phase reaction mechanism is based on previous works15,49 and con-
tains 87 neutral, excited, and ion species and 1500 reactions.

The spatial distributions of the electron density [e], electron
temperature Te, negative fluorine ion density [F−], ionization by bulk
electrons Sb, and ionization by secondary electrons Ss are shown in
Fig. 3. Due to the large high frequency power which dominantly
heats electrons, the electron density is high, with a maximum value
of 9.5 × 1010 cm−3. The bulk electron temperature, shown for electron
densities >1.0 × 109 cm−3, is 3.4–3.8 eV over the wafer. High energy
electrons are initially produced by secondary electron emission
by ion bombardment, followed by acceleration in the sheaths.
The electron source generated by bulk electrons Sb mirrors that of [e]
and Te. Most of the ionization is produced by bulk processes. The
ionization produced by sheath accelerated beam electrons plays a sec-
ondary but, nevertheless, an important role in the overall ionization
dynamics. Fluorine and oxygen containing plasmas can have signifi-
cant densities of negative ions. The density of F−, shown in Fig. 3(c),
is the largest density of negative ions in this process with a
maximum density of 2.2 × 1010 cm−3. Due to the plasma having, on
the average, a positive electric potential, the F− ions are confined to
the center of the plasma. The negative ions have only a small overall
effect on plasma transport dynamics to the wafer due to their negligi-
ble density close to the sheath region where their effect on electron
heating dynamic would be the most important.

Plasma–surface interactions result from the fluxes of reactive
species and ions, and their energy and angular distributions onto

the surface. The fluxes of the most significant neutral and ion
species incident onto the wafer at radius of 7.5 cm are listed in
Table I. These fluxes include the fluorocarbon radicals most
responsible for polymer deposition as well as atomic oxygen, which
etch and remove the polymer. The ratio of the flux of ions and neu-
trals to the wafer is an important parameter in the overall process
dynamics. The anisotropy of the process is enabled by the

FIG. 2. CCP reactor geometry and circuit.

FIG. 3. Plasma properties for the base case: (a) electron density [e], (b) elec-
tron temperature Te, (c) negative fluorine ion density [F−], (d) ionization rate by
bulk electrons, and (e) ionization rate by secondary electrons.
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directionality of ions incident onto the surface, whereas the fluxes
of neutral fluorocarbon radicals determine passivation. This is espe-
cially true for HAR processes in which the overall performance
requires a precise balance of deposition and removal of polymeriz-
ing radical fluxes, both of which are either indirectly or directly
dependent on the neutral as well as ion fluxes.

In addition to the magnitude of the ion flux, the influence of
energetic positive ion fluxes incident onto the surface and their
transport through HAR features is sensitive to their energy and
angular distribution (IEAD). The combined IEAD of all positive
ion species onto the wafer is shown in Fig. 4(a). Due to the large
applied low frequency power, the sheath potential, and commensu-
rate DC self-bias, positive ions are accelerated vertically into the
wafer while traversing the sheath. This leads to a narrow angular
distribution of ions striking the wafer with energies up to 4800 eV,
both properties being desirable in the context of HAR etch processes.

IV. FEATURE SCALE MODEL

The process investigated in this work is a HAR plasma etch
into SiO2 using an amorphous carbon (AC) mask, schematically
shown in Fig. 4(b). A SiO2 substrate is covered by a 850 nm thick
AC film patterned to ideally yield a straight walled opening with an
initial width of 90 nm. The etch was performed for 60 s.

The profile simulations were performed using the Monte
Carlo Feature Scale Model (MCFPM).7,15,48 MCFPM resolves the
bulk and surface properties on 3D cubic mesh. Here, the mesh
cells—voxels—have equal side lengths of 1 nm. Each cell has a
material identity. Gas phase species represented by Monte Carlo
pseudoparticles are launched with fluxes, and energy and angular
distributions obtained from HPEM. In the MCFPM, cell identities
are changed, or cells are removed or added for reactions including
passivation, etching, and deposition. The reactions of thermal
(low energy) species with the surface for processes that do not have
threshold energy are described by a reaction probability p. Reactions
of ions and hot neutrals (energetic ions that have been neutralized
during collisions with surfaces) have reaction yields having an
energy and angular dependence. In the MCFPM, the energy
dependence of chemical and physical sputtering is implemented
using the expression15,49

p(ε) ¼ p0
(ε� εth)

q

(εth � ε0)
q (2)

for incident energy ε, reference energy ε0, reference probability
p0, and threshold energy εth. Unless indicated otherwise, the opti-
mization of energy-dependent reaction probabilities refers to the
value of p0. The SiO2 reaction mechanism is based on previous
work by Huang et al.49 and is described in detail in Ref.15.
A high-level overview of the mechanism is listed in Table II.

SiO2 can be removed through physical sputtering by energetic
ions and hot neutrals. The sputtered products can redeposit on
other surfaces. Unsaturated fluorocarbons can chemisorb on SiO2

to form an oxide-fluorocarbon complex. This complex is, in turn,
easier to sputter based on lower threshold energy and overall
higher reaction probability as the site has a lower binding energy.
Additional polymer can deposit on top of the complex as well as
other surfaces, providing a physical barrier to further etching and
providing sidewall passivation. The polymer can be removed by
physical sputtering or chemical etching by oxygen radicals. The
only O-containing radical having significant fluxes to the surface is
ground state atomic oxygen.

The gas phase reactions with the mask and substrate are ulti-
mately contained in a single global reaction mechanism where they
interact and share certain reactions, such as polymer deposition.

TABLE I. Base case fluxes to wafer.

Species Flux (cm−2 s−1)

C3F4 9.5 × 1016

C2F3 6.8 × 1016

CF 4.4 × 1016

CF2 9.4 × 1016

CF3 8.4 × 1015

O 7.7 × 1016

Ions 1.2 × 1016

FIG. 4. Inputs for feature profile simulation: (a) Ion energy and angular distribu-
tion (IEAD) incident onto the wafer. (b) Initial feature geometry (not to scale)
consisting of a SiO2 substrate with an amorphous carbon mask.
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A high-level overview of the AC mask reaction mechanism is also
in Table II. See the supplementary material for a listing of the
entire mechanism.86 The mask mechanism includes polymer depo-
sition by CxFy precursors on AC and on prior deposited polymer.
Similar to the etch mechanism for SiO2, polymer is removed by
oxygen radicals and physical sputtering. The AC can be sputtered
by ions and hot neutrals as well.

The polymer, as deposited, consists of individual CxFy radi-
cals and so is strictly an assembly of monomers. This radical
based film can subsequently crosslink to create an actual poly-
meric material that is more resistant to sputtering. Ion bombard-
ment can then break bonds (chain scission) to produce a lower
molecular weight polymer. A mechanism was developed to rep-
resent crosslinking between the deposited monomers and break-
ing of those crosslinks.

A polymer’s physical and chemical properties can be depen-
dent on crosslinks with neighboring species. The manner of linkage
determines the reactivity of the polymer due to, for example, a lack
of available radical sites for additional bonding or more resistance
to physical processes due to an increase in total bond strength.
These crosslinks can be broken by exposure to the plasma produc-
ing energetic particles or radiation. Since these energetic particles
are typically delivered anisotropically to the surface, this spatially
discriminating activation can result in shaping of the polymer dep-
osition. A schematic of the crosslinking model is in Fig. 5. The cre-
ation of crosslinks during polymer deposition is represented in the
left column Figs. 5(a)–5(d) and the removal or breaking of cross-
links is represented in the right column Figs. 5(e)–5(g).

Crosslinking occurs during the deposition of eligible materials
[Figs. 5(a) and 5(b)]. (By material, we refer to incident species,
such as CF3 or C2F3, or their counterparts in the film.) Each mate-
rial has a maximum number of neighbors to which it can crosslink

based on the number of available bonds (three in the example in
Fig. 5). For example, CF2 would have a maximum of two crosslinks
and CF3 would have a maximum of a single crosslink. When a
crosslink eligible deposition material is incident onto the surface, a
randomly ordered search is conducted of nearest neighbors for
other crosslink eligible materials that have available bonding sites.
Based on a prescribed crosslinking probability and choice of a
random number (0,1) crosslinks are made (or not made) with the
eligible neighbors. The number of crosslinks (and the available
bonding sites) are recorded for each cell [Fig. 5(c)]. If crosslinking
occurs the cell identities are changed to represent the change in
physical properties of cell [Fig. 5(d)] that may include, for example,
sputtering probability.

Crosslinks can be broken by impinging particles such as ions,
hot neutrals, and photons [Fig. 5(e)]. The bond breaking is repre-
sented by decreasing the crosslink number for both crosslink part-
ners [Fig. 5(f )] and reversion of the material identify back to an
unlinked state [Fig. 5(g)].

Since the control of necking and clogging by polymer deposi-
tion is of special interest, we discuss an important control parameter.
The amount of polymer growth is determined by the relative contri-
butions of deposition and removal. A steady state polymer thickness
occurs when these contributions balance. Polymer removal occurs by
sputtering and O-radical based etching. In oxygen rich gas mixtures,
polymer removal can be dominated by O-radical based etching,
mostly ground state atomic oxygen. In the mechanism discussed
here, necking and clogging (the amount of polymer deposition in
the mask region) can ultimately be controlled by the reaction proba-
bility of the O based polymer etching. The final etch profiles for oth-
erwise identical process conditions are shown in Fig. 6 while varying
the probability of polymer etching by O-atoms. An etch probability
of 0.005 results in net polymer growth ultimately leads to a complete

TABLE II. High-level description of SiO2 and AC etch mechanism.

Species

M ion or hot neutral AC amorphous carbon mask
S surface site (g) gas phase
P polymer (s) solid
PC crosslinked polymer

Reaction Description

SiO2(s) +M(g) → SiO2(g) +M(g) Physical sputtering of SiO2

S(s) + SiO2(g) → S(s) + SiO2(s) SiO2 redeposition
SiO2(s) + CxFy(g) → SiO2CxFy(s) SiO2-fluorocarbon complex formation
SiO2CxFy(s) +M(g) → SiO2CxFy(g) +M(g) Complex sputtering
S(s) + CxFy(g) → S(s) + P(s) Polymer deposition on Surfaces
P(s) + CxFy(g) → P(s) + P(s) Polymer deposition on polymer
P(s) + O(g) → COFy(g) Polymer etch by O
AC(s) + CxFy(g) → AC(s) + P(s) Polymer deposition on AC
P(s) +M(g) → P(g) +M(g) Polymer sputtering
AC(s) + M(g) → AC(g) +M(g) AC sputtering
P(s) + P(s) → PC(s) + PC(s) Crosslinking
PC(s) + PC(s) +M(g) → P(s) + P(s) +M(g) Breaking of crosslinking

ARTICLE pubs.aip.org/avs/jva

J. Vac. Sci. Technol. A 42(4) Jul/Aug 2024; doi: 10.1116/6.0003554 42, 043008-6

Published under an exclusive license by the AVS

 29 June 2024 17:28:28

https://pubs.aip.org/avs/jva


clog at the top of the feature. Higher removal probabilities, while still
producing significant necking, do not fully clog the feature and allow
for continued etching throughout the entire process, as shown in
Fig. 6 for a probability of 0.02.

V. TARGET METRICS AND LOSS FUNCTION

Scalar metrics are needed to evaluate the quality of the simula-
tion–experiment matching when tuning the reaction mechanism.
In this work, the loss function L(p) of a given parameter set p is
the root-mean-squared (RMS) error between the simulation and
experiment of geometric parameters, defining the shape of the
etched feature, shown in Fig. 7. While these shape parameters are
not independent of each other, they, nevertheless, each aim to repre-
sent a specific characteristic of the feature that is of technical rele-
vance. The width of the mask opening wm including deposition
stands as a measure of the necking and clogging, a process that is
dependent on the ratio of the fluxes of polymer depositing to remov-
ing species. The narrowed opening can impede neutral gas transport
into the feature, trap etch products inside the feature, and shadow
the trajectories of ions and photons. Although the shape (curvature)
of the polymer deposition is not a parameter in this investigation,
the curvature of the polymer affects the angle of the trajectory with
which ions (hot neutrals) reflect from its surface as they progress
deeper into the surface. A higher-level approach might include shape
(curvature) of the polymer in the optimization process.

FIG. 5. Schematic of the crosslink mechanism shown here in two dimensions.
(a) Incident particle, (b) deposition, (c) crosslink availability, (d) change in prop-
erties, (e) energetic particle bombardment, ( f ) bond breaking, (g) change in
properties.

FIG. 6. Etch features for different O based polymer etch probabilities of (a)
0.005 and (b) 0.02.
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The width at the top of the feature wt aims to capture under-
cutting (etching under the mask) that most often occurs with
excessive isotropic etching of the substrate or with there being
insufficient passivation of the surface of the substrate compared to
that of the mask material. The maximum width of the feature wf

captures the occurrence of bowing or tapering, which can be
caused by lack of passivation or broad ion angular distributions
(bowing) or excessive passivation (tapering).

Mask selectivity refers to the relative rate of etching of the
mask compared to the substrate. Masks for HAR etching must have
high selectivity (low etch rate) compared to the substrate so that

the mask has a reasonably small thickness. The thickness of the
mask hm must be controlled to ensure that the mask has a critical
thickness at the end of the etch. The thickness of the mask deter-
mines the degree to which ions having broad angular spread are
shadowed by and reflect off the mask prior to entering the feature.
The depth of the final feature hf fundamentally defines the charac-
teristics of HAR features and for a given process time determines
the etch rate. Undesired etch defects such as twisting72 can be cap-
tured by measuring the asymmetry ah across the vertical center axis
(dotted vertical line in Fig. 7).

The loss function is then

L(p) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
awm(ŵm � wm)

2 þ awt(ŵt � wt)
2 þ awh(ŵh � wh)

2 þ awhm(ĥm � hm)
2 þ awf (ĥf � hf )

2 þ awah(âh � ah)
2

q
, (3)

where the hat accent (^) denotes the target value of a property. Each
singular error component can be weighted in accordance to its impor-
tance or sensitivity by the weight factors ai. In this work, all compo-
nents are equally weighted with the exception of the total asymmetry
awah which has higher weighting. The total asymmetry is computed
based on the total number of asymmetric computational cells, which
has a substantially different scale than the other factors.

For any given evaluation of the loss function L(p), the MCFPM
is executed to simulate a full etch of 60 s, which carries with it a
computational cost. The method of evaluating and minimizing L(p)
through the optimization algorithm should have the goal of mini-
mizing the number of evaluations. In this work, the target metrics
are based on the SEM image shown in Fig. 7. This image was pro-
duced after the process described in Sec. III was performed in a
reactor on which the simulated geometry was based.

VI. GRADIENT DESCENT

Gradient descent (GD) is a method for minimizing a multi-
variate error function, which is convenient due to its conceptual
simplicity, universality, and fast convergence. The GD method has
been applied to a wide variety of physical and engineering
problems.64,65,73–77 In short, GD is based on following the gradient
of a loss function L to its minimum as shown in Fig. 8. For a given
set of parameters pi, the selection of the next set of parameters is

piþ1 ¼ pi � η∇L(pi), (4)

where η is the learning rate, which controls the effective step size
and the rate of descent. The loss function consists of a set of dis-
crete points that results from successive runs of the MCFPM and
so is not natively differentiable. A finite difference scheme was used
to estimate the partial gradients in every dimension by evaluating L
(p) at a test location L(p0),

L(p0j) ¼ L(pþ xjp
0
j), (5)

with xj is the displacement unit vector and p0j, the branch step size
for every dimension of the parameter space n, and computing the

FIG. 7. Feature specifications. (a) Target metrics used to evaluate the experi-
mental matching. (b) SEM image from the base case experiment used for evalu-
ation of the model.
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relative derivative ΔL/Δpj. Effectively, the discrete gradient descent
formulation becomes

piþ1 ¼ pi � η
Xn
j¼1

xj
ΔL
Δpj

¼ pi � η
Xn
j¼1

xj
L(pi)� L(p

0i)

pij � p
0i
j

: (6)

A useful modification to the gradient descent method is the
use of a momentum term that enables the method to overcome local
extrema and avoid convergence around a nonglobal minimum.
Analogous to the momentum in Newtonian physics, momentum in
GD adds an inertia term to the updated parameters. The previous
gradient is remembered and the update on the next iteration is deter-
mined by the effective gradient gi, which is a linear combination of
the actual gradient and the previous update,

piþ1 ¼ pi � ηgi, (7)

with

gi ¼ βgi�1 þ ∇L(pi), (8)

where β is the momentum decay coefficient which determines the
overall strength of the momentum term. Akin to a heavy ball, rolling
down a gravitational potential (referred to as heavy ball method) the
gradient descent is less affected by small scale perturbation or
“roughness” of the loss function surface.

Based on this methodology, an initial optimization was per-
formed. The tuning parameters as well as the range of their permit-
ted values are listed in Table III. In the context of the surface
reaction mechanism, these five parameters affect a class of reactions
with many individual reactions. For example, ps,SiO2, the sputter
probability of SiO2 and ps,SiO2CFXY, the sputter probability of
SiO2-polymer complex affect all ion and fast neutral surface reac-
tions, 44, respectively. The target metrics obtained from experimen-
tal data are listed in Table IV. The choice of the range of permitted
values was based on prior experience and knowledge of the domi-
nating physics. A judicious choice of the range of permitted values
speeds the optimization process while also preventing the optimiza-
tion process from converging on a nonphysical set of parameters.
For example, if a nonphysical value of polymer etching probability
is allowed, the optimization algorithm might compensate for that
value with nonphysical value of another parameter.

The initial optimization was performed for a total of 100
epochs. (An epoch is single round of evaluating the loss function
with a given set of parameters.) The evolution of the total loss func-
tion is shown in Fig. 9(a) as a function of the number of elapsed
epochs. The total loss quickly decreased during the first 20 epochs
which indicates a partially successful optimization. This convergence
is mirrored by the evolution of the target metrics, shown in Fig. 9(b).
The three metrics, etch depth hf, minimum mask opening wm, and
maximum feature width wf quickly approach their target values,

FIG. 8. Outline of the gradient descent method for a 1D parameter space.

TABLE IV. Target metrics for optimization.

Symbol Description Target value

wm Width of mask opening 45 nm
wt Width at the top of the feature 90 nm
wf Maximum width of the feature 90 nm
hf Etch depth 825 nm
hm Remaining mask thickness 850 nm
ah Asymmetry 0

TABLE III. Tuning parameters for optimization.

Symbol Description
Minimum

value
Maximum

value

ps,SiO2 Sputter probability of SiO2 0.0 0.3
ps,SiO2CFXY Sputter probability of

SiO2-polymer complex
0.1 0.5

pp,SiO2 SiO2-polymer complex
formation probability

0.1 0.5

pe,poly O based polymer etch 0.0 0.5
pd,poly-AC Polymer deposition

probability on mask
0.0 0.5
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represented by dashed horizontal lines. The remaining metrics were
fairly insensitive to changes in the mechanism. In order to reduce
clutter, they were omitted from the plot.

Some of the trends in computed metrics are correlated to the
underlying adjustments to the parameters defining the etching
mechanism, a selection of which is shown in Fig. 9(c). The increase

in final predicted etch depth, for example, can be explained by
changes to the SiO2-polymer complex formation probability, pp,
SiO2, and its sputter probability, ps,SiO2CFXY, both of which increase
in tandem with the increase in final etch depth. However, beyond
epoch 20, the clear trend toward error minimization breaks down
and instabilities both in the model error and in the metrics emerge.
In terms of the loss function composition, this breakdown seems to
be dominated by large swings in hf, suggesting its especially high
sensitivity to aburpt changes in the mechanism. This breakdown
results from the underlying definition of the loss function.

The step size with which the parameter space is traversed is
inherently tied to the magnitude of the gradient [Eq. (6)] and
should diminish as one approaches the minimum (zero gradient).
L(p) is derived from predicted profiles produced by the MCFPM,
which has a finite grid resolution—the dimension of the voxel. As
the step size diminishes, producing a small change in the physics
coefficients, the physical change in the predicted profile may not
exceed the size of the voxel and there is no change in the loss func-
tion. At this point, the loss function is no longer differentiable, as
shown in Fig. 10. This condition can lead to an absence of a gradi-
ent when the change in the profile stays within a single voxel, pro-
ducing a breakdown of the functional relation between p and
L(p) = L = constant. Another outcome is an overestimation of the
gradient when a small change in p causes the previous static profile
to change to a different voxel providing a finitely large response.

The GD method provides rapid initial convergence but is
potentially erratic when approaching the optimum, in part due to
the discrete changes in the loss as the resolution approaches that of
the voxel-based mesh. The behavior of the GD and control of the
speed of the initial descent speed is a function of the learning rate
η. The evolution of L(p) for different learning rates η = 1 × 10−4,
5 × 10−4, 1 × 10−3, and 5 × 10−3 is shown in Fig. 11. The rate of
descent is correlated to η. A smaller learning rate leads to smaller
step sizes used to traverse across the parameter space and, conse-
quently, a slower overall descent. Due to the limitations of the
method that result from the erratic differentiation near convergence
(an outcome of the finite voxel size), all optimizations eventually
result in a convergence failure, independent of the learning rate.

In spite of the limitations imposed by the finite difference
approach, the GD method has the ability to overcome local minima
(to some degree) while having rapid and controllable initial
descent. This rapid initial convergence is particularly important in

FIG. 9. Results from the gradient descent optimization for etch parameters as a
function of epoch. (a) Minimal epochal loss, (b) values of select metrics as a
function of epochs, and (c) select model parameters as a function of epochs.

FIG. 10. Finite resolution of the loss function leads to convergence issues.
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minimizing the number of loss function evaluations and so mini-
mizing computational cost. As a result, one is motivated to retain
the GD method to approach the optimized values, followed by a
more robust though possibly more slowly converging optimization
method. In this work, the Nelder–Mead method was selected to
perform this latter task.

VII. NELDER–MEAD OPTIMIZATION

The Nelder–Mead (NM) method is a gradient free optimiza-
tion algorithm that has been used in a wide variety of optimization
problems.78–84 Conceptually, the NM method represents the tuning
parameters as a point in an n-dimensional solution space, where n
is the number of tuning parameters to be optimized. A simplex, an
object with n + 1 vertices, each representing a different set of parame-
ters, is employed to traverse the solution space through geometric trans-
formations along its centroid x0. An example is shown in Fig. 12 with
n= 2− a 2D solution space where the simplex is a triangle,

• Sorting: The points are sorted according to their loss function
from best (lowest loss) to worst (highest loss), L(u) , L(v) , L(w)

• Reflection: Reflect the worst point, w, across the centroid;
r = x0 + α(x0−w), with α > 0.

• Extension: Extend the reflection beyond point r; e = x0 + γ(r− x0),
with γ > 1.

• Contraction: Generate two points, c0 and c1, that represent con-
tractions of r toward w; c0 = x0 + ρ(r− x0) and c1 = x0 + ρ(w− x0)
with 0 < ρ < 0.5.

• Shrinkage: Shrink the simplex towards the best point; w’ = u + σ
(w− u) and v’ = u + σ(v− u), with 0 < σ < 1.

Using these geometric transformations, the NM algorithm
consists of a specific set of decisions, which leads to an iterative

loop that requires at least one successive evaluation of the loss func-
tion and a maximum of four evaluations per epoch. A flow chart of
the Nelder–Mead algorithm is shown in Fig 13. Every epoch begins
by sorting the simplex points according to their loss function value,
with L(u) < L(v) < L(w). Reflection is always the first geometric
operation to be tested. If the reflected point, r, is better than the
previous second point but worse than the best [L(u) < L(r) < L
(v)], the reflected point replaces the previously worst point (w = r)
and the epoch ends. If r is better than the previously most pre-
ferred point [L(r) < L(u)], the extension point e is tested and
added to the simplex if it outperforms r [L(e) < L(r)]. If the
reflected point r is worse than all other simplex points, the con-
traction is performed. If neither c0 nor c1 have a lower loss than r,
the simplex is shrunk and the next epoch is initiated. This loop
continues until the maximum number of iterations is reached or
the specified convergence has been reached. Since the individual
parameters represent physical quantities, additional constraints
can be placed on the values of the parameters. For example,
sputter yields less than zero or reaction probabilities greater than
one can be accounted for by limiting respective transformations
to valid ranges.

Since NM is a direct search method (only relies on direct evalu-
ations of the loss function itself), NM does not suffer from the same
issues that arise with GD, which relies on discrete differentiation.
NM is regarded as heuristic optimization in this context. Although

FIG. 11. Evolution of the total loss for different learning rates η = 1 × 10−4,
5 × 10−4, 1 × 10−3, and 5 × 10−3.

FIG. 12. Examples of the geometric transformations of the parameter simplex
in a 2D parameter space; reflection; extension; contraction; shrinkage.

ARTICLE pubs.aip.org/avs/jva

J. Vac. Sci. Technol. A 42(4) Jul/Aug 2024; doi: 10.1116/6.0003554 42, 043008-11

Published under an exclusive license by the AVS

 29 June 2024 17:28:28

https://pubs.aip.org/avs/jva


convergence is technically not formally guaranteed, from a practical
perspective NM does nearly always converge. This convergence
results from the finite grid size. The loss function effectively becomes
insensitive to perturbations below a certain threshold. Once the opti-
mization process switches from GD to NM, no instabilities or non-
stationary convergences were encountered.

The use of NM as the only convergence method is somewhat
vulnerable to the presence of local minima. That is, NM may con-
verge around a nonglobal minimum. This propensity for local
convergence increases for higher order problems as the size of the
parameter space increases. This tendency for local convergence is
greatly reduced by initializing the first simplex in the vicinity of
the absolute minimum as provided by the initial GD method.
That is, the first simplex is not initialized at a random location.

As a result, the NM portion of the optimization does not need to
perform complete coverage of the parameter space nor conduct
an exhaustive search. For our conditions, the sequential GD-NM
approach minimized the computational load by reducing the
number of loss function evaluations compared to random scatter
initialization or swarm optimization methods.85

VIII. HYBRID GD-NM OPTIMIZATION

Sequentially executing GD and NM optimization algorithms
produces a hybrid scheme whose goal is to address the weakness
of each singular approach while capturing their positive qualities.
The two optimizers are executed sequentially. The initial gradient
descent method is the same as described in Sec. XI and is executed
for a prescribed number of epochs. After the final GD epoch, the
NM method is initialized. The NM method requires at least n + 1
points of the parameter space to construct the simplex object.
The set of initial simplex points contains the best and last point
(in terms of loss) obtained from the GD method as well as the best
n− 2 points taken from a randomly distributed scatter across the
entire parameter space. In this case, 20 random samples were used.
This technique provides for the translation of the GD results as
well as an adequate spread across the parameter space to prevent
an early false convergence of the NM method.

The convergence and output parameters produced by the
hybrid optimization scheme are shown in Fig. 14 as a function of
epoch for the same conditions as in Fig. 9: (a) minimum epochal
error, (b) selected metrics, and (c) evolution of the tuning param-
eters. The evolution of the total model error has three stages.
Stage I consists of the initial rapid descent and nearly monotonic
reduction of the loss function, enabled by the gradient descent
with an appropriate learning rate. Starting at approximately epoch
20, stage II suffers from convergence instabilities which are
reflected in fluctuations in the target metrics [Fig. 14(b)] and
model parameters [Fig. 14(c)]. At epoch 100, stage III, the gradient
descent is terminated and, based on its results, the NM algorithm is
initiated. The fluctuations are rapidly dampened and a stable conver-
gence commences. The error drops to approximately 3 × 10−3, which
given the grid resolution is on the order of a single cell or less. This
minimization in error is mirrored in the target metrics [Fig. 14(b)],
which converge to the desired values. The final parameter set is
listed in Table V.

The definition of model physics parameters based on this
optimizer algorithm is based on the reduced scalar representation
of the feature. The method will not capture effects that are not
included in the target metrics. For example, a subset of the features
produced by the MCFPM after the full etch process is shown in
Fig. 15 as a function of epochal progression. (These features are pre-
dictions at the end of the full etch period for a particular set of
model parameters corresponding to an epoch. The sequence of fea-
tures is not the temporal evolution of the feature itself.) The SEM
from which the target metrics were extracted is also shown (gray-
scale). Here, too, the optimization stages can be identified. During
epochs 0–20, belonging to stage I (initial descent), the monotonic
behavior is reflected in the increasing etch depth and widening of
the necking. The increased etch rate directly correlates with increase
in oxide-polymer complex formation, its removal, and increase in

FIG. 13. Flow chart describing the Nelder–Mead optimization algorithm.
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the SiO2 sputter rate. The decreased polymer deposition at the top of
the mask is a consequence of the increasing polymer etch by oxygen.

Stage II (instabilities) produces erratic behavior in the pre-
dicted profiles with an absence of clear trends. Between epochs 20

and 100, the etch depth and polymer deposition vary seemingly
randomly without clear trends. In stage III and with the change to
the Nelder–Mead algorithm for epochs 100–200, the mechanism
converges with a lack of nonmonotonic evolution of the metrics. In
the absence of a gradient (as in the Nelder–Mead method), conver-
gence failure is eliminated with there being no changes to the simu-
lation setup, structure of the reaction mechanism, and process
sensitivities. This outcome supports the proposal that the inade-
quate gradient determination is the primary failure mode.

Overall, the final simulated etch feature at epoch 200 is in
good agreement with the experimental counterpart in terms of the
metrics used in the optimization process. There are, however, some
key differences between the predicted profiles and the experimental
SEM. For example, there are differences in the vertical position of
the minimum in necking and the taper of the mask. The mismatch
in these properties is due to the fact that they were not part of the
optimization metrics. Assuming that the optimization process pro-
duced good model parameters, these differences indicate that (a)
the mechanism lacks processes that would otherwise determine the
necking location or taper, (b) the nonoptimized physics parameters
are not accurate, and/or (c) the solution is not unique and a second
solution might better capture these phenomena.

The lack of guaranteed uniqueness is a drawback of most opti-
mization schemes, including this one. The physics informed nature
of this approach does, however, enhance physical understanding
through the choice of reaction mechanism and the derived parame-
ters. Omitting known minor reactions and setting reasonable
ranges of parameters may reduce the applicability of the reaction
mechanism while increasing the likelihood of a physically valid and
unique outcome. There is inevitably a trade-off between general
applicability and uniqueness of the solution for a more narrowly
defined problem. These results stress the importance of including
metrics that address the most critical properties of the features in
the optimization process, as well as the physics in the reaction
mechanism that correlate to those properties. For example, taper of
the feature is known to be sensitive to the chemical sputtering
probability as a function of angle of incidence of energetic particles.
This physics parameter was included in our mechanism but was
not a part of the optimization process.

In this context, metrics and the optimization processes are as
a whole coupled, requiring at least a partial simultaneous evalua-
tion. That is, independently optimizing each metric will not
produce the desired result. This coupling can be demonstrated by
the relationship between necking and clogging and feature evolu-
tion. Necking or, in the extreme, clogging reduces or entirely

FIG. 14. Results from the combined gradient descent and Nelder–Mead optimi-
zation. (a) Minimal epochal loss, (b) values of select metrics as a function of
epochs, and (c) select model parameters as a function of epochs.

TABLE V. Final tuning parameters after coupled optimization.

Tuning Parameter

Value

Single feature 4-feature array

ps,SiO2 0.0852 0.0909
ps,SiO2CFXY 0.1471 0.1384
pp,SiO2 0.278 0.2729
pe,poly 0.0423 0.0628
pd,poly-AC 0.094 0.0842
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impedes the transport of reactive species and ions into the feature,
slowing or terminating the etch process. In the event of clogging,
the etch process is stopped, which prevents evaluation and optimi-
zation of the etch process as a whole. Since, in this work, metrics
are only derived from the final feature after a fixed etch time, there
is no mechanism to differentiate between two fully clogged features
based on the mask metrics alone. The width of mask opening is
wm= 0 in both cases even if the rates of the deposition were differ-
ent and the clogging occurred at different times during the etch.
However, differences in rates of, for example, deposition can affect
the time that the feature finally clogs. The longer the time that the
feature is not clogged, the deeper the total etch depth. Through this
mechanism, the etch depth acts as a secondary metric for the clog-
ging mechanism, without which prior attempts to optimize the iso-
lated mask mechanism failed.

Overall, the hybrid optimization scheme performed satisfacto-
rily in that it produced a mechanism that reproduces the desired
feature with high accuracy. However, aspects of the process have
potential for improvement, particularly with respect to the required
computer time. For example, A single optimization requires approxi-
mately 20 CPU hours using an Intel Xeon Gold 6254 processor. This
does not include the initial HPEM run required as the input. The
epoch at which switching between GD and NM methods should be
carefully chosen. Epochs spent in stage II produce little additional
information and are not a good use of computing resources. Such
hybrid optimization schemes should include a mechanism or crite-
rion to identify convergence failure of the GD and automatically
switch to the secondary algorithm. A careful choice of the needed
convergence would also minimize the number of epochs spent in
stage III.

IX. TRANSFERABILITY OF THE CONVERGED
MECHANISM

A test of whether the derived model parameters are physically
relevant is to evaluate their transferability to related processes. Given
the small sample set, overfitting or circumstantial unphysical results
are a major concern. We use the term related processes deliberately.
The parameters that have been derived from the optimization process
are physics parameters that should, in principle, apply to a wide range
of process conditions. However, there is a practical limit. For example,
introduction of new gases or new method of excitation (inductively
coupled versus capacitively coupled) would likely exceed that limit or
require additional parameters in the optimization process.

A. Variation of O2 in flow

To test the applicability of the derived model parameters, a
process with a different input power (PLF = 6.0 kW and PHF = 2.5 kW)
was simulated with differing oxygen to fluorocarbon feedstock gas
ratios (O2/C4F6 = 0.5, 1, 1.5, and 2.5). All other conditions were kept
the same as the base case. The most significant changes compared to
the base case were in the particle fluxes incident on the wafer surface,
which are shown as a function of the feed gas ratio in Fig. 16(a).
The variation in the O2/C4F6 ratio was achieved, experimentally and
in the simulation, by adjusting the rate of oxygen inflow only. As a
consequence, the fluxes of the major contributing fluorocarbons
remain nearly constant. The O-atom flux increases from 4.1 × 1016 to
1.5 × 1017 cm−2s−1, a factor of 3.6, with an increase of the oxygen
inflow by factor of 5. These trends indicate that mole fractions of
feedstock gases do not translate one-to-one to the surface fluxes.

FIG. 15. Final features after etch com-
pletion for different parameter sets as a
function of epochal evolution and the
actual experimental target feature.
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The features generated by MCFPM using the derived reac-
tion parameters and their experimental counterparts are shown in
Fig. 17. Although the reaction mechanism used in MCFPM was
not specifically tuned for these process conditions, relevant trends
were qualitatively reproduced. For example, trends in polymer
deposition on the mask are reproduced. At low O2 fraction and

low O-atom flux, the O based etching of deposited polymer is low
which leads to full clogging of the feature in both the experiment
and simulation. With increasing O2, the rate at which polymer is
removed increases and the necking is reduced, being essentially
absent for the O2/C4F6 = 2.5 case.

The lack of polymer film on the mask leads to increased mask
erosion with increasing O2 inflow. The amount of mask erosion in
the simulated features is not in quantitative agreement with the
experimental results. This lack of quantitative agreement is likely

FIG. 16. Parametric data for application of derived parameters to other etch
conditions. (a) Fluxes incident on the wafer surface as a function or the O2/C4F6
feedstock gas ratio. (b) IEADs onto the wafer resulting for the low frequency
power PLF = 0, 4, 6, and 8 kW.

FIG. 17. Variation of oxygen in O2/C4F6 gas mixtures: (a) Predicted features.
(b) SEM images of the features resulting from the corresponding experiments.
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due to not having the necessary physical processes in the mecha-
nism despite not being specifically required for the initial optimiza-
tion process. For example, direct oxidation of the AC mask by O2

was not included in the mechanism but may become important at
larger O2 flow rates. The etch depth is related to the mask necking
through reduction in particle transport into the feature and
through onset of an etch stop with full clogging. Full clogging of
the feature for O2/C4F6 = 0.5 is reproduced by simulation, however,
etch depth for the fully clogged feature is not reproduced as this
depth depends on when the feature was clogged.

The experiments show maximum etch depth for O2/C4F6 = 1.5,
which is only marginally shown by the simulation. The fact that the
etch rate does not increase from O2/C4F6 = 1.5–2.5 cannot be
explained by differences in physical transport alone. In the reac-
tion mechanism, the CxFy radicals can deposit on the mask and
in the feature and, subsequently, be removed by O-atom etching.
At this point, the CxFy becomes unavailable at the etch front. The
relative increase of O-atom flux may produce a certain level of
fluorocarbon-starvation that limits the etch rate.

Overall, however, the predicted trends generally agree with
experiments. This outcome is not necessarily the expectation given
the fact that the mechanism was tuned for only a single different
process. The emergence of these untrained trends is a consequence
of using a physics informed optimization approach where the
derived parameters are physics parameters and not simply fitting
parameters. The ability to reproduce the experimental trends, to
some degree, speaks to this approach’s ability to avoid overfitting
issues. While not exhaustively demonstrated, the effective parame-
ter space reduction introduced by the physics informed approach
seems to have enabled the extrapolation of the model beyond its
training regime. These trends also rely on the fluxes produced by
the HPEM being ground truth and accurately representing experi-
mental fluxes, which adds additional variability to the process.

B. Variation of low frequency power

As second test of the model parameters derived from the opti-
mization process was prediction of feature profiles while varying
the low frequency power, PLF = 0, 4, 6, and 8 kW. The low fre-
quency power is often used to control the ion energy at the surface
of the wafer. IEADs onto the wafer are a first-order process variable
in HAR etching. The IEADs produced by HPEM for this range of
PLF are shown in Fig. 16(b) with there being a direct correlation
between PLF and the mean and maximum energies of ions at the
wafer. While the IEAD for PLF = 0 kW has the lowest energies, the
distribution does contain ions exceeding 500 eV. The high fre-
quency RF power alone produces oscillation in the plasma potential
and high energy ions. The maximum angular spread has little vari-
ation as a function of PLF, with the exception of PLF = 0 kW which
has significant broadening of the angular distribution.

Using the derived model parameters, MCFPM simulations
were performed for the different values of PLF = 0. Those results
and the experimental SEM references are shown in Fig. 18. The
profiles, experiment, and simulation for PLF = 0 kW produce total
clogging of the mask opening, indicating that ion energy through
sputtering plays an important role in removing excess polymer.
The remaining cases (PLF = 4, 6, and 8 kW) have unclogged

features and full etching with unexpected little variation of the
etch depth as a function of low frequency. In the experimental
data, a doubling of PLF (4–8 kW) produces few differences in the
final features. These trends indicate that, above a certain threshold
energy, the etch progression and the mask removal process are
not ion starved but rather limited by neutral gas transport. To
some degree, this trend is reproduced by the simulations where
etch depth does increase with increasing low frequency power,
however, the rate of increase is substantially sublinear with, 635,
715, 720 nm of final etch depth, respectively. These outcomes
indicate that the effect of ion energy (for example, in sputter yield
or related processes) might be overestimated in the mechanism.
Again, this assessment assumes that the results produced by the
HPEM are ground truth.

FIG. 18. Variation of low frequency power. (a) Predicted features. (b) SEM
images of the features resulting from the corresponding experiments.
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X. OPTIMIZATION BASED ON MULTIPLE FEATURES

Monte Carlo based simulations are inherently subject to statisti-
cal variations. Since the loss function used for optimization is based
on a single feature’s properties, overfitting of the target metrics may
occur. To partially mitigate and to roughly estimate the degree of
overfitting, the optimization was performed on a linear array of four
features. The individual features in the 4-feature array are identical to
those used in optimizations to this point. The width of the features is
90 nm, with a center-to-center pitch spacing of 130 nm, and distance
between the edges of features 40 nm. Using the 4-feature array, the
total loss function to be minimized is the average of the loss func-
tions of the individual features. The pseudoparticles directed toward
the feature array from the top of the simulation domain in the
MCFPM are launched based on a shared random number pool. The
pseudoparticles are launched randomly onto the surface encompass-
ing all four features, a process which introduces statistical variation
between the features. The number of pseudoparticles used in the
simulation was increased so that during a given time interval, the
particle flux (particles/area) was the same as for a single feature.

Apart from the change in feature geometry, the optimization
process is unchanged. Analogous to the results discussed in
Sec. VIII for a single feature, the epochal evolution of the loss func-
tion for the 4-feature array is shown in Fig. 19(a). As with the
single feature optimization, three distinct stages in the optimization
can be identified. The initial descent (stage I) commences more
rapidly than with the single feature in spite of what should be the
same learning rates. This outcome may be the result of the induced
statistical variation due to the launching of particles, which is shared
among the features. That variation, to a degree, remedies some of
the initial overfitting to statistical noise and enables a smoother gra-
dient descent. While the convergence failure (stage II) still occurs,
the random oscillation of the loss is significantly dampened com-
pared to that for a single feature [Fig. 14(a)]. This outcome is likely
due to the propensity for incorrect gradient calculations for any
single feature being partially negated by acceptable gradient calcula-
tions in other features. The errant gradient calculations are unlikely
to occur in all features at the same time. The final convergence
(stage III) is similar to that of the single feature optimization in that
the loss rapidly converges to a stable value. Although the final loss is
slightly larger than that for a single feature, it is still determined by
feature variations on the order of a single numerical cell.

These trends are confirmed by the convergence of the metrics
shown in Fig. 19(b), which are the average of the four features. All
metrics converge to their respective targets. Compared to the single
feature, the initial approach of the metrics to their targets is faster
and the intermediate nonconvergence oscillations are less erratic
and of smaller magnitude. The corresponding tuning parameters
are shown in Fig. 19(c). While their epochal evolution differs from
that of the single feature, their final values are similar. The final
values of the turning parameters for the 4-feature array are listed in
Table V.

The feature arrays produced as a function of epoch are shown
in Fig. 20. As with the single feature optimization, the initial mech-
anism produces clogged features, caused by insufficient polymer
etching and which leads to an early etch stop. With progressing
epochs (left to right in Fig. 20), the net polymer deposition is

reduced and the etch rate and etch depth increase. At epoch 100,
immediately before stage III, the scalar metrics [Fig. 19(b)] and 2D
feature representation both indicate a good match in etch depth
but excessive feature bowing which is largely removed with

FIG. 19. Results of the feature array optimization. (a) Minimal epochal loss, (b)
values of select metrics as a function of epochs, and (c) select model parame-
ters as a function of epochs.
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subsequent ongoing optimization. As in experimental etching of
arrays of features, there is some statistical variation from feature to
feature. For example, the SEMS in Figs. 17 and 18 show feature to
feature variation due to the statistical nature of the reactant fluxes
entering each feature. This feature to feature variation occurs in the
simulations for the same reason.

While these findings indicate that the optimization based on
feature arrays is generally preferable to that using only a single
feature, these improvements must be weighed against the increase in
computational cost that is incurred by the larger geometry and sub-
sequent increase in total number of cells and in the number of pseu-
doparticles that must be launched. Overall, the required computation
time increases linearily with the number of features. Approximately,
80 CPU hours were required for the optimization process using four
features compared to 20 CPU hours for the single feature.

XI. CONCLUDING REMARKS

A two-stage hybrid optimization scheme was discussed aimed
at optimizing physical parameters in a reaction mechanism that is
used in profile simulations of high aspect ratio plasma etching into
a SiO2 substrate using a C4F6/Ar/O2 gas mixture. The process was
performed in a dual frequency capacitively coupled plasma reactor
with independently controlled high frequency and low frequency
powers applied to the bottom electrode. The optimization scheme
consisted of consecutive execution of finite difference GD and
Nelder–Mead (NM) algorithms. Doing so enabled taking advantage
of some of the desirable qualities of each method while at least par-
tially negating some of their respective drawbacks. The fast, initial
descent of the GD method was maintained while its instability was

dampened by the subsequent NM process. The reaction mecha-
nism was optimized to best represent the geometric properties of a
final etched feature extracted from scanning electron microscopy
images. Using appropriate target metrics, optimization produced a
mechanism that was able to reproduce the experimental reference
with sub-1% error based on the metrics describing the feature.
Performing the optimization process using multiple features
improved the stability of the method.

The transferability of the mechanism was tested by applying
the mechanism to etch processes outside the training parameter
space using different gas compositions and low frequency power.
The mechanism captured the relevant trends. In a variation of the
O2/C4F6 ratio, the mechanism reproduced the onset of feature clog-
ging and, to a lesser degree, trends in necking and mask erosion.
Similarly, a variation of the low frequency power produced a com-
parable onset of clogging at low power, which was also captured by
the mechanism. Trends in the feature etch rate (or lack thereof) are
reproduced to a lesser degree.

Overall, the optimization process described here to refine
physics parameters in a plasma etch mechanism shows promise in
that with a limited set of data, transferable physics parameters were
produced. Using a single SEM image, the process produced a
mechanism that was able to reproduce a good match to the training
target and was able to reproduce relevant trends outside of its
immediate training regime. This degree of success is a consequence
of the physics informed optimization approach. A base mechanism
that already contained explicit formulations of the relevant physical
processes was refined by the optimization process. As a conse-
quence, the outcome is more universally applicable than the singu-
lar case to which it was matched.

FIG. 20. Final feature grids after etch
completion for different parameter sets
as a function of epochal evolution and
the actual experimental target feature.
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Improvements to this proof of concept study include a more
effective criterion for the algorithm switching between GD and NM,
and a robust formulation to detect convergence and initiate an early
termination of the optimization process to reduce unnecessary
compute overhead. Further parallelization may reduce the time to com-
pletion while possibly increasing the total required computational cost.
This could be implemented by parallelizing the execution of individual
MCFPM instances or parallel execution of an ensemble of single fea-
tures. Another potential improvement is the expansion of the metrics
to include not only a single process condition but rather a match to
one or more parametric sweeps, improving the overall statistical quality
and physical validity. Additional geometrical feature metrics could
be added to better define the features or replace the finite feature
metrics with image-to-image comparisons. The latter could lever-
age image-to-image translation techniques that have been devel-
oped for image processing. Alternatively, the inclusion of multiple
features per process condition could prove useful to include statis-
tical variance and prevent overfitting, which is of great concern
whenever only a small set of data is used.

ACKNOWLEDGMENTS

This work was supported by Tokyo Electron Ltd. and
Samsung Electronics Co. These results were also based upon work
supported by the U.S. Department of Energy, Office of Science,
Office of Fusion Energy Sciences under Award No. DE-SC0020232.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts of interest.

Author Contributions

Florian Krüger: Conceptualization (equal); Data curation (equal);
Formal analysis (lead); Investigation (lead); Methodology (lead);
Software (lead); Validation (equal); Visualization (equal); Writing –
original draft (equal); Writing – review & editing (equal). Du
Zhang: Data curation (equal); Project administration (equal);
Resources (equal); Supervision (equal); Validation (equal);
Visualization (equal); Writing – review & editing (equal). Pingshan
Luan: Data curation (equal); Resources (equal); Supervision (equal);
Validation (equal); Visualization (equal); Writing – review & editing
(equal). Minjoon Park: Data curation (equal); Resources (equal);
Supervision (equal); Visualization (equal); Writing – review &
editing (equal). Andrew Metz: Data curation (equal); Resources
(equal); Supervision (equal); Visualization (equal); Writing – review
& editing (equal). Mark J. Kushner: Conceptualization (equal); Data
curation (equal); Funding acquisition (equal); Investigation (equal);
Methodology (equal); Project administration (equal); Supervision
(equal); Validation (equal); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1V. M. Donnelly and A. Kornblit, J. Vac. Sci. Technol. A 31, 050825 (2013).
2I. Adamovich et al., J. Phys. D: Appl. Phys. 50, 323001 (2017).
3G. Packard, A. Rosenfeld, G. S. Oehrlein, and S. Hamaguchi, Plasma Sources
Sci. Technol. 27, 023001 (2018).
4Y. Suzuki, S. Iwashita, T. Sato, H. Yonemichi, H. Moki, and T. Moriya,
“Machine learning approaches for process optimization,” in 2018 International
Symposium on Semiconductor Manufacturing (ISSM), Tokyo, Japan 2018
December (IEEE, 2018), pp. 1–4.
5R. Anirudh et al., IEEE Trans. Plasma Sci. 51, 1750 (2023).
6Y. G. Yook et al., J. Phys. D: Appl. Phys. 55, 255202 (2022).
7D. Zhang, S. Rauf, and T. Sparks, IEEE Trans. Plasma Sci. 30, 114 (2002).
8D. Zhang, S. Rauf, T. G. Sparks, and P. L. G. Ventzek, J. Vac. Sci. Technol. B
21, 828 (2003).
9T. Iwase et al., Jpn. J. Appl. Phys. 58, SE0802 (2019).
10N. Kuboi, J. Micro/Nanopattern. Mater. Metrol. 22, 041502 (2023).
11J. A. Sethian and D. Adalsteinsson, IEEE Trans. Semicond. Manuf. 10, 167 (1997).
12M. Chopra, S. Helpert, R. Verma, Z. Zhang, X. Zhu, and R. Bonnecaze, Proc.
SPIE 10588, 105880G (2018). .
13T. Shimada, T. Yagisawa, and T. Makabe, Jpn. J. Appl. Phys. 45, L132 (2006).
14H. Tsuda, Y. Takao, K. Eriguchi, and K. Ono, Jpn. J. Appl. Phys. 51, 08HC01
(2012).
15S. Huang et al., J. Vac. Sci. Technol. A 37, 031304 (2019).
16C. M. Huard et al., J. Vac. Sci. Technol. A 35, 031306 (2017).
17H. Tsuda, K. Eriguchi, K. Ono, and H. Ohta, Appl. Phys. Express 2, 116501
(2009).
18N. A. Mauchamp and S. Hamaguchi, J. Vac. Sci. Technol. A 40, 53004 (2022).
19C. M. Huard, S. Sriraman, A. Paterson, and M. J. Kushner, J. Vac. Sci.
Technol. A 36, 06B101 (2018).
20C. Qu, Y. Sakiyama, P. Agarwal, and M. J. Kushner, J. Vac. Sci. Technol. A 39,
52403 (2021).
21R. Dussart et al., J. Appl. Phys. 133, 113306 (2023).
22G. Antoun et al., Sci. Rep. 11, 357 (2021).
23R. Dussart, T. Tillocher, P. Lefaucheux, and M. Boufnichel, J. Phys. D: Appl.
Phys. 47, 123001 (2014).
24A. Mesbah and D. B. Graves, J. Phys. D: Appl. Phys. 52, 30LT02 (2019).
25A. D. Bonzanini et al., Plasma Sources Sci. Technol. 32, 024003 (2023).
26J. Moyne and J. Iskandar, Process 5, 39 (2017).
27D. Gidon, D. B. Graves, and A. Mesbah, Plasma Sources Sci. Technol. 26,
085005 (2017).
28T. F. Edgar et al., Automatica 36, 1567 (2000).
29M. Hankinson, T. Vincent, K. B. Irani, and P. P. Khargonekar, IEEE Trans.
Semicond. Manuf. 10, 121 (1997).
30D. Stokes and G. S. May, IEEE Trans. Semicond. Manuf. 13, 469 (2000).
31J. H. Xia, X. Rusli, and A. S. Kumta, IEEE Trans. Plasma Sci. 38, 142 (2010).
32W. Q. Xiong et al., IEEE Trans. Semicond. Manuf. 34, 207 (2021).
33J. H. Xia, X. Rusli, and A. Kumta, IEEE Trans. Plasma Sci. 38, 1091 (2010).
34C. E. Davis and G. S. May, IEEE Trans. Electron. Packag. Manuf. 31, 104
(2008).
35P. Seleson et al., Comput. Phys. Commun. 279, 108436 (2022).
36T. Gergs, B. Borislavov, and J. Trieschmann, J. Vac. Sci. Technol. B 40, 12802
(2022).
37G. Dong et al., Nucl. Fusion 61, 126061 (2021).
38S. Morosohk and E. Schuster, Contrib. Plasma Phys. 63, e202200153 (2023).
39C. Ma, B. Zhu, X. Q. Xu, and W. Wang, Phys. Plasmas 27, 42502 (2020).
40A. Merlo et al., Nucl. Fusion 61, 096039 (2021).
41J. C. Martínez-Loyola et al., Nucl. Fusion 62, 126067 (2022).
42P. Rodriguez-Fernandez et al., Fusion Sci. Technol. 74, 65 (2018).
43S. Dasbach and S. Wiesen, Nucl. Mater. Energy 34, 101396 (2023).
44Y. Kim, S. Lee, T. Jung, B. Lee, N. Kwak, and S. Park, Proc. SPIE 9428, 942806
(2015).
45Y. Yang and Y. Xu, J. Vac. Sci. Technol. B 41, 52602 (2023).

ARTICLE pubs.aip.org/avs/jva

J. Vac. Sci. Technol. A 42(4) Jul/Aug 2024; doi: 10.1116/6.0003554 42, 043008-19

Published under an exclusive license by the AVS

 29 June 2024 17:28:28

https://doi.org/10.1116/1.4819316
https://doi.org/10.1088/1361-6463/aa76f5
https://doi.org/10.1088/1361-6595/aaa86c
https://doi.org/10.1088/1361-6595/aaa86c
https://doi.org/10.1109/ISSM.2018.8651142
https://doi.org/10.1109/ISSM.2018.8651142
https://doi.org/10.1109/TPS.2023.3268170
https://doi.org/10.1088/1361-6463/ac58cf
https://doi.org/10.1109/TPS.2002.1003950
https://doi.org/10.1116/1.1562637
https://doi.org/10.7567/1347-4065/ab1638
https://doi.org/10.1117/1.JMM.22.4.041502
https://doi.org/10.1109/66.554505
https://doi.org/10.1117/12.2297482
https://doi.org/10.1117/12.2297482
https://doi.org/10.1143/JJAP.45.L132
https://doi.org/10.1143/JJAP.51.08HC01
https://doi.org/10.1116/1.5090606
https://doi.org/10.1116/1.4979661
https://doi.org/10.1143/APEX.2.116501
https://doi.org/10.1116/6.0002003
https://doi.org/10.1116/1.5049225
https://doi.org/10.1116/1.5049225
https://doi.org/10.1116/6.0001121
https://doi.org/10.1063/5.0142056
https://doi.org/10.103/s41598-020-79560-z
https://doi.org/10.1088/0022-3727/47/12/123001
https://doi.org/10.1088/0022-3727/47/12/123001
https://doi.org/10.1088/1361-6463/ab1f3f
https://doi.org/10.1088/1361-6595/acb28c
https://doi.org/10.3390/pr5030039
https://doi.org/10.1088/1361-6595/aa7c5d
https://doi.org/10.1016/S0005-1098(00)00084-4
https://doi.org/10.1109/66.554497
https://doi.org/10.1109/66.554497
https://doi.org/10.1109/66.892633
https://doi.org/10.1109/TPS.2009.2037151
https://doi.org/10.1109/TSM.2021.3068974
https://doi.org/10.1109/TPS.2010.2043858
https://doi.org/10.1109/TEPM.2008.919345
https://doi.org/10.1016/j.cpc.2022.108436
https://doi.org/10.1116/6.0001485
https://doi.org/10.1088/1741-4326/ac32f1
https://doi.org/10.1002/ctpp.202200153
https://doi.org/10.1063/1.5129158
https://doi.org/10.1088/1741-4326/ac1a0d
https://doi.org/10.1088/1741-4326/ac9d4c
https://doi.org/10.1080/15361055.2017.1396166
https://doi.org/10.1016/j.nme.2023.101396
https://doi.org/10.1117/12.2087765
https://doi.org/10.1116/6.0002823
https://pubs.aip.org/avs/jva


46M. Omura et al., Jpn. J. Appl. Phys. 58, SEEB02 (2019).
47K. J. Owen, B. VanDerElzen, R. L. Peterson, and K. Najafi, “High aspect ratio
deep silicon etching,” in 2012 IEEE 25th International Conference on Micro
Electro Mechanical Systems (MEMS), Paris, France 2012 January (IEEE, 2012),
pp. 251–254.
48B. Wu, A. Kumar, and S. Pamarthy, J. Appl. Phys. 108, 51101
(2010).
49S. Huang, S. Shim, S. K. Nam, and M. J. Kushner, J. Vac. Sci. Technol. A 38,
023001 (2020).
50Z. Hu et al., J. Vac. Sci. Technol. A 41, 63113 (2023).
51J. Bobinac et al., Micromachines 14, 665 (2023).
52R. P. Brinkmann, J. Phys. D: Appl. Phys. 44, 042002 (2011).
53W. Park, J. Han, S. Park, and S. Y. Moon, Vacuum 216, 112466
(2023).
54X. Xiao, X. Ke, B. Su, and H.-Y. Zhang, ECS Trans. 104, 201 (2021).
55T. Matsushita, T. Matsumoto, H. Mukai, S. Kyoh, and K. Hashimoto, Proc.
SPIE 9428, 942807 (2015).
56A. A. Kaptanoglu, K. D. Morgan, C. J. Hansen, and S. L. Brunton, Phys. Rev. E
104, 015206 (2021).
57E. P. Alves and F. Fiuza, Phys. Rev. Res. 4, 033192 (2022).
58K. Willcox and J. Peraire, AIAA J. 40, 2323 (2002).
59Y. Xing et al., J. Micromech. Microeng. 22, 085020 (2012).
60M. A. Goslvez et al., J. Micromech. Microeng. 21, 065017 (2011).
61Y. Li, Y. Xing, M. A. Gosálvez, P. Pal, and Y. Zhou, “Particle swarm optimiza-
tion of model parameters: Simulation of deep reactive ion etching by the contin-
uous cellular automaton,” in 2013 Transducers & Eurosensors XXVII: The 17th
International Conference on Solid-State Sensors, Actuators and Microsystems
(TRANSDUCERS & EUROSENSORS XXVII), Barcelona, Spain 2013 June (IEEE,
2013), pp. 1087–1090.
62C.-C. Liu, Y. Li, Y.-S. Yang, C.-Y. Chen, and M.-H. Chuang, “Automatic
device model parameter extractions via hybrid intelligent methodology,” in 2020

International Conference on Simulation of Semiconductor Processes and Devices
(SISPAD), Kobe, Japan 2020 September (IEEE, 2020), pp. 355–358.
63T. Xiao and D. Ni, Processess 9, 151 (2021).
64M. S. Daoud et al., Arch. Comput. Methods Eng. 30, 2431 (2022).
65M. Jalalitabar et al., Mathematics 11, 682 (2023).
66L. Zhou et al., Electronics 12, 994 (2023).
67S. Takenaga, Y. Ozaki, and M. Onishi, Optim. Lett. 17, 283 (2023).
68Z. Huang, S. Yan, and M. Rosenbusch, Optimizing ion transport in a multi-
reflection time-of-flight mass spectrograph by a modified Nelder-Mead simplex
algorithm Authorea (published online, 2023).
69M. J. Kushner, J. Phys. D: Appl. Phys. 42, 194013 (2009).
70T. Piskin et al., J. Appl. Phys. 133, 173302 (2023).
71C. Qu et al., J. Appl. Phys. 127, 133302 (2020).
72M. Shen et al., Jpn. J. Appl. Phys. 62, SI0801 (2023).
73H. J. M. Shi, M. Qiming Xuan, F. Oztoprak, and J. Nocedal, Optim. Methods
Softw. 38, 289 (2023).
74E. J. Paul, M. Landreman, and T. Antonsen, J. Plasma Phys. 87, 905870214
(2021).
75D. Shin and S. J. Hong, J. Vac. Sci. Technol. B 41, 64002 (2023).
76J. A. Désidéri, C. R. Math. 350, 313 (2012).
77S. Ruder, arxiv.org/abs/1609.04747 (2016).
78R. R. Barton and J. S. Ivey, Manage. Sci. 42, 954 (1996).
79K. R. Mahmoud, Electromagnetics 31, 578 (2011).
80I. Fajfar, Á Bűrmen, and J. Puhan, Optim. Lett. 13, 1011 (2019).
81C. Audet and C. Tribes, Comput. Optim. Appl. 71, 331 (2018).
82M. A. Luersen and R. Le Riche, Comput. Struct. 82, 2251 (2004).
83Y. Ozaki, M. Yano, and M. Onishi, IPSJ Trans. Comput. Vis. Appl. 9, 1
(2017).
84Y. Lee, A. Resiga, S. Yi, and C. Wern, J. Manuf. Mater. Process. 4, 66 (2020).
85E. Zahara and Y. T. Kao, Expert Syst. Appl. 36, 3880 (2009).
86See supplementary material online for listing of the full reaction mechanism.

ARTICLE pubs.aip.org/avs/jva

J. Vac. Sci. Technol. A 42(4) Jul/Aug 2024; doi: 10.1116/6.0003554 42, 043008-20

Published under an exclusive license by the AVS

 29 June 2024 17:28:28

https://doi.org/10.7567/1347-4065/ab163c
https://doi.org/10.1109/MEMSYS.2012.6170138
https://doi.org/10.1109/MEMSYS.2012.6170138
https://doi.org/10.1063/1.3474652
https://doi.org/10.1116/1.5132800
https://doi.org/10.1116/6.0003032
https://doi.org/10.3390/mi14030665
https://doi.org/10.1088/0022-3727/44/4/042002
https://doi.org/10.1016/j.vacuum.2023.112466
https://doi.org/10.1149/10404.0201ecst
https://doi.org/10.1117/12.2085628
https://doi.org/10.1117/12.2085628
https://doi.org/10.1103/PhysRevE.104.015206
https://doi.org/10.1103/PhysRevResearch.4.033192
https://doi.org/10.2514/2.1570
https://doi.org/10.1088/0960-1317/22/8/085020
https://doi.org/10.1088/0960-1317/21/6/065017
https://doi.org/10.1109/Transducers.2013.6626960
https://doi.org/10.1109/Transducers.2013.6626960
https://doi.org/10.1109/Transducers.2013.6626960
https://doi.org/10.1109/Transducers.2013.6626960
https://doi.org/10.23919/SISPAD49475.2020.9241613
https://doi.org/10.23919/SISPAD49475.2020.9241613
https://doi.org/10.23919/SISPAD49475.2020.9241613
https://doi.org/10.3390/pr9010151
https://doi.org/10.1007/s11831-022-09872-y
https://doi.org/10.3390/math11030682
https://doi.org/10.3390/electronics12040994
https://doi.org/10.1007/s11590-022-01953-y
https://doi.org/10.22541/au.169265002.28126249/v1
https://doi.org/10.1088/0022-3727/42/19/194013
https://doi.org/10.1063/5.0146168
https://doi.org/10.1063/5.0002522
https://doi.org/10.35848/1347-4065/accbc7
https://doi.org/10.1080/10556788.2022.2121832
https://doi.org/10.1080/10556788.2022.2121832
https://doi.org/10.1017/S0022377821000283
https://doi.org/10.1116/6.0003034
https://doi.org/10.1016/j.crma.2012.03.014
https://arxiv.org/abs/1609.04747
https://doi.org/10.1287/mnsc.42.7.954
https://doi.org/10.1080/02726343.2011.621110
https://doi.org/10.1007/s11590-018-1306-2
https://doi.org/10.1007/s10589-018-0016-0
https://doi.org/10.1016/j.compstruc.2004.03.072
https://doi.org/10.1186/s41074-016-0012-1
https://doi.org/10.1016/j.eswa.2008.02.039
https://pubs.aip.org/avs/jva

