
Articles
https://doi.org/10.1038/s41928-018-0100-6

1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA. 2Present address: College of Electronic
Engineering and Information Science, Zhejiang University, Hangzhou, China. 3These authors contributed equally to this work: Mohammed A. Zidan,
YeonJoo Jeong. *e-mail: wluee@eecs.umich.edu

Numerical computations, such as solving partial differential
equations (PDEs), are ubiquitous in scientific research and
engineering1–4, as are many other tasks that involve simula-

tion, prediction and optimization, such as weather forecasting5 and
economics6. Analytical PDE solutions are rare, and the vast majority
of systems of PDEs are solved (or integrated) using numerical meth-
ods that are computationally expensive, involving iterative vector–
matrix operations with massive amounts of data. In fact, the most
powerful supercomputers are normally built to carry out such large-
scale numerical computation tasks1,7. The limit in efficiency can be
traced to the classical von Neumann computing architecture with
separate memory and processing units8,9, which is the same root
cause that affects the hardware performance of other data-centric
applications9–11. Compared with soft computing tasks such as arti-
ficial neural networks, solving PDEs can be considerably more dif-
ficult because it typically requires high precision during operations
to ensure convergence and an accurate solution. Additionally, the
matrices used are typically extremely large, magnifying the hard-
ware challenges.

Recent advances in emerging devices such as memristors12–17
offer promising alternatives to the classical computing architecture.
As a memory device, often termed resistive random-access memory
(RRAM), a memristor stores data with its different resistance values:
for example, ‘0’ may be represented by a high-resistance state and
‘1’ may be represented by a low-resistance state2–20. Programming
the device between the resistance states is achieved with a write/
erase voltage above a threshold, and data readout is achieved with
a read voltage below the threshold. Besides data storage, the device
acts as a two-terminal switch that directly modulates the current
passing through it, based on the resistance values14–17. Hence, mem-
ristors can be used to physically perform analogue multiplication
in-memory, where the current that passes through the device is
equal to the applied voltage multiplied by the stored conductance
value, without having to retrieve data from a separate memory17.
With this approach, common ‘multiply and accumulate’ operations

can be achieved by arranging the devices in a crossbar structure,
where the output current of a column represents the dot product
between the input voltage vector and the device conductance vector
associated with the column, following Ohm’s law and Kirchhoff ’s
current law15–17,21–25.

The co-location of memory and logic, and the high parallel-
ism offered by the crossbar structure (in which vector–matrix
multiplication can be carried out in a single readout operation),
have generated strong interest in memristor-based computing
systems15–17,21–28. So far, the focus has been on tasks such as arti-
ficial neural networks15,16,23–28, which typically aim to obtain an
approximate or qualitative solution and can thus tolerate lim-
ited precision and device variabilities29–31. This is not the case
for numerical computational tasks such as solving PDE prob-
lems, where high-precision and accurate solutions are manda-
tory, making it more challenging to implement these computing
tasks in memristor-based hardware. For example, a well-designed
memristor device may provide around 64 different resistance lev-
els21,32, which is equivalent to six binary bits. However, practical
numerical tasks may require up to 64 bits (264 levels) of precision.
Additionally, solving PDEs normally involves working with very
large matrices that are neither practical nor efficient to fit in a
single memristor crossbar. Recent theoretical33 and experimental
studies34 have used memristor (including phase-change memory)
arrays to generate an initial, low-precision guess (seed), and rely
on an integrated high-precision digital solver to produce the
required high-precision solutions from the seed solution. Such
types of accelerators are certainly beneficial, as they reduce the
number of iterations required by the digital solver. Determining
whether memristor-based hardware can be used to directly
perform high-precision computing tasks, however, will enable
a better understanding of how broadly memristive hardware
can be applied. Such knowledge will help pave the way to build
more general memristor-based computing platforms, instead of
special-purpose accelerators.

A general memristor-based partial differential
equation solver
Mohammed A. Zidan   1,3, YeonJoo Jeong   1,3, Jihang Lee   1, Bing Chen   1,2, Shuo Huang   1,
Mark J. Kushner   1 and Wei D. Lu   1*

Memristive devices have been extensively studied for data-intensive tasks such as artificial neural networks. These types of
computing tasks are considered to be ‘soft’ as they can tolerate low computing precision without suffering from performance
degradation. However, ‘hard’ computing tasks, which require high precision and accurate solutions, dominate many applica-
tions and are difficult to implement with memristors because the devices normally offer low native precision and suffer from
high device variability. Here we report a complete memristor-based hardware and software system that can perform high-pre-
cision computing tasks, making memristor-based in-memory computing approaches attractive for general high-performance
computing environments. We experimentally implement a numerical partial differential equation solver using a tantalum oxide
memristor crossbar system, which we use to solve static and time-evolving problems. We also illustrate the practical capabili-
ties of our memristive hardware by using it to simulate an argon plasma reactor.

NAture eLeCtroNiCS | www.nature.com/natureelectronics

mailto:wluee@eecs.umich.edu
http://orcid.org/0000-0003-3843-814X
http://orcid.org/0000-0001-5855-5066
http://orcid.org/0000-0001-8214-5905
http://orcid.org/0000-0001-5284-8618
http://orcid.org/0000-0002-3055-646X
http://orcid.org/0000-0001-7437-8573
http://orcid.org/0000-0003-4731-1976
http://www.nature.com/natureelectronics

Articles NaTure elecTroNics

In this Article, we present a memristor-based in-memory com-
puting system, including a complete hardware and software package,
that can effectively address the concerns of limited device precision
and crossbar size. We experimentally solve static and time-evolving
problems using the memristor crossbar-based hardware system,
with results comparable to those obtained from digital solvers. We
further verify the system’s performance in a real-world task, where
the memristor-based PDE solver is used as part of the workflow in
a comprehensive plasma-hydrodynamics simulator package for the
type of plasma systems used for plasma etching. We achieved reli-
able results comparable to conventional digital PDE solvers, with
improvements in power efficiency and throughput.

High-precision memristor computing system
A system of PDEs describes the relationship between multiple
variables and their partial derivatives. Typically, a system of PDE
is solved numerically by discretizing space (and/or time) into grid
points such that the partial derivatives at one point can be reduced
into combinations of the variable values at several neighbouring
grid points. Afterwards, the problem is mapped to matrix form,
with the numerical coefficients representing linearized operators
between variables at neighbouring grid points. The resulting coef-
ficient matrix can be very large but is typically sparse. This process
is performed during the initial problem formulation stage, using
techniques such as finite-difference, finite-element or finite-volume
methods (see Methods). Iterative methods are then used to estimate
the variable values at the grid points through the coefficient matrix
and the system’s boundary conditions (Fig. 1a). These operations
can be performed through a series of vector–matrix operations that
we aim to compute in memristor crossbars.

For practical systems, the coefficient matrix can be very large:
for example, a 2D system with a 100 × 100 grid will result in a
coefficient matrix with (104)2 = 108 elements. However, the coef-
ficient matrix is also typically sparse, with only a very small frac-
tion of non-zero elements, as shown in Fig. 1b (see examples in
Methods). This makes it difficult and inefficient to map the coef-
ficient matrix into a single memristor array. By taking advantage
of the sparsity, we can divide the matrix into equally sized slices
and map only the active slices (the ones containing non-zero ele-
ments) into memristor crossbars, as shown in Fig. 1c. By doing so,
practical crossbar sizes, for example 16 × 16 or 32 × 32, can be used
to map the active slices, while greatly improving the hardware uti-
lization. Because during vector–matrix operations all devices are
selected, device nonlinearity will not play an important role for
such small crossbar arrays17. Using smaller crossbar arrays also
minimizes parasitic effects due to series resistance, sneak currents
and imperfect virtual grounds23,35, thus making it feasible to build

practical hardware systems using passive crossbar arrays—that is,
without selectors.

We also show that the low native precision of memristor
devices can be extended through the use of multiple crossbars,
where each crossbar represents a given number of bits (Fig. 1d).
This precision expansion approach is similar to the techniques
used in digital circuits, where binary (two-level) physical values,
such as capacitor voltages in a dynamic random-access memory,
are used as the basis of high-precision computing systems. Similar
approaches have also been proposed to improve the effective pre-
cision (for example, effective bitwidth of the weights) in memris-
tor-based neural networks24–28. Assuming that a memristor can
natively support a number l of resistance levels, the goal is thus to
perform high-precision arithmetic operations using base-l num-
bers, analogous to the use of base-2 numbers in digital circuits. At
the single crossbar level, analogue vector–matrix multiplications
are performed directly between an input vector, represented by
the voltage pulses applied to the rows, and the coefficient matrix
elements, represented by the memristor conductance values, as
shown in Fig. 1e. By summing results from the partial products
from these base-l operations, the desired output for the extended
precision can then be obtained (see Methods).

We experimentally implemented the proposed approach in a
complete hardware and software package, as shown in Fig. 2a. The
hardware is based on a Ta2O5−x memristor crossbar array, which is
wire-bonded and integrated onto a printed circuit board (PCB) to
carry out the coefficient matrix storage and vector–matrix multi-
plication tasks, shown in Fig. 2b. The software, based on Python,
performs system-level operations including matrix slicing, mapping
the problem to the hardware using the precision-extension task and
controlling the iterative processes (see Methods and Supplementary
Fig. 1). The software also provides an interface between the hard-
ware and the end user for data input/output (see Supplementary
Fig. 2 for the program interface).

A scanning electron microscopy (SEM) image of the as-fab-
ricated memristor crossbar is shown in Fig. 2c. For reliable array
operation, the initial forming voltage Vform required to establish
switching behaviour should be low, as a high Vform can lead to high
voltage drop on devices sharing the same electrode, even under
common protective voltage schemes (that is, for the V/3 scheme, the
voltage on these half-selected devices is about (1/3)Vform)36, leading
to damage of already-formed devices in the same array. The Ta2O5–x-
based memristor devices using a thin (3.5 nm) Ta2O5−x switching
layer offer low forming voltage (1.25 V) and stable switching char-
acteristics, as shown in Fig. 2d. The forming, set and reset voltages
measured from multiple (26) devices are shown in Fig. 2e, obtained
using a pulse programming method through the test board. The

a e

m-bit

n-bit

n-bit

n-bit

Coefficient matrix Active slices

b c d

Tim
e

V0

V1

V3

V4

Ij = Vi • Gi,j

Fig. 1 | High-precision PDe solver based on memristor crossbar. a, An example of a time-evolving system showing a water wave inside a pool at four
different time instances. b, An example sparse coefficient matrix used in numerically solving PDEs. c, The coefficient matrix is sliced into equal-sized
patches, and numerical calculations are performed only for the active (non-zero) slices. d, Each high-precision (m-bit) active slice is mapped into multiple
arrays, each representing a portion (n-bit) of the desired precision. e, The values of the elements in the n-bit slice are mapped as conductance values in
a memristor crossbar of the same size, and vector–matrix multiplication operations of the slice are performed by supplying the input vector as voltage
pulses to the rows and reading out the current outputs at the columns.

NAture eLeCtroNiCS | www.nature.com/natureelectronics

http://www.nature.com/natureelectronics

ArticlesNaTure elecTroNics

forming voltage Vform is less than 3Vset, ensuring that high volt-
age will not be applied to the half-selected devices. Moreover, the
devices show narrow distributions (σ < 0.1 V) for forming, set and
reset voltages, making these devices well suited for passive crossbar
array operations.

However, the inherent stochastic ion migration processes in the
set and reset stages lead to sizable device variability37,38, as shown in
Fig. 2f. Without any feedback mechanism during programming, a
cell-to-cell variation of 5.3% may occur, limiting the native preci-
sion of a single device to four bits. Lower device variability can be
obtained by using a write–verify feedback method39,40 (see Methods
and Supplementary Fig. 3), as shown in Fig. 2g, leading to a cell-
to-cell variation of < 1%. Combined with the precision-extension
technique discussed above, this device system is successfully used
to experimentally demonstrate the proposed high-precision PDE
solver system.

Poisson’s equation example
The first test using the memristor-based system was static prob-
lems. This class of equations describes spatial relationships between
the variables at a steady-state condition. Examples include ellip-
tic PDE systems such as Laplace’s + =u u(0)xx yy and Poisson’s

+ =u u f x y((,))xx yy equations41. Typically, elliptic and other sys-
tems of PDEs can be numerically formulated as solving an ⋅ =A X B
problem, where X is the unknown vector to be solved, A is the
coefficient matrix, and B is a constant vector containing the bound-
ary conditions. While such problems can be solved using several
numerical techniques, here we adopted the Jacobi method42 as it
can be directly mapped to the memristor crossbar hardware system
using entirely iterative vector–matrix operations (see Methods).

Specifically, at iteration k, a new estimate of the unknown vector
X is computed for the next iteration k + 1 as:

= − ⋅+ RX C X (1)k k(1) ()

where R is a modified coefficient matrix with the diagonal elements
removed, and C is a constant vector that includes the boundary val-
ues. Equation (1) can be implemented in a crossbar array by map-
ping R and C to the crossbar with numerical values represented by
the memristor device conductances, as shown in Fig. 3a. By applying
X(k) to the input rows of this crossbar as voltage pulses, the output
currents collected at the columns represent the new estimated value
of X(k+1). The process is then repeated iteratively by feeding X(k+1) to
the system as the next input until the desired accuracy is achieved.

Based on this approach, we experimentally solved a Poisson’s
equation test case at 16-bit precision using our hardware set-up. The
problem is defined as:

∂
∂

+ ∂
∂

= −u
x

u
y

x y2sin()cos() (2)
2

2

2

2

The expected solution of the problem is shown in Fig. 3b, along
with the boundary conditions shown in Fig. 3c. Equation (2) is
then converted to the matrix form using a five-point numerical
stencil, through the finite-difference method (see Methods). Here
we used a uniform grid, which typically results in a symmetric
matrix with the non-zero elements along the penta-diagonal
directions. In this example, only four elements along any row are
non-zero after removal of the diagonal elements following the
Jacobi method. Specifically, when dividing the matrix into 3 × 3
slices (if the number of grid points is a multiple of 3), only four
different patterns are needed. We thus divided the coefficient
matrix into 3 × 3 slices and wrote the four patterns into a 16 × 3
array (Supplementary Fig. 4). Time multiplexing is then used to
obtain the vector–matrix products from the crossbar output for
different slices sharing the same pattern. The different partial
products are then summed through the board to obtain the final
output. Time multiplexing is not required in general, as parallel
processing of the slices can be obtained if a larger crossbar hard-
ware system can be built.

Using the proposed precision-extension approach any target
precision can potentially be achieved in the hardware system. Here,
16-bit precision is needed for the input and output vectors to achieve
convergence and correct solutions. With the proposed approach,
the Poisson’s equation was iteratively solved using the memristor-
based system at 16-bit precision. We used a simple coarse-to-fine
grid approach to improve the numerical convergence speed, where
we started with a 3 × 3 grid and ended with a 30 × 30 grid (over
the same area) after ten system iterations. After each iteration, the
solution is updated and the grid size is increased, where the coarse
grid solution acts as an initial approximation for the next finer grid.

–6

–3

0

3

6

V
ar

ia
tio

n
(%

)

Devices
–6

–3

0

3

6

Devices

f g

0

0.5

1

1.5

2

10–9

10–8

10–7

10–6

10–5

10–4

10–3

–1.5 –1 –0.5 0 0.5 1 1.5

C
ur

re
nt

 (
A

)

Voltage (V)

Reset
Set

Forming

d e

b

Pd

Ta2O5–x

Pd

Ta

Read

a c

V
ol

ta
ge

 (
V

)

For
m

ing Set

Res
et

V
ar

ia
tio

n
(%

)

Fig. 2 | Hardware set-up and device measurement. a, A photograph
of the memristor-based PDE solver system in operation, showing the
hardware set-up controlled by a software package. b, A photograph of the
test board with the memristor crossbar chip mounted on it. c, SEM image
of the as-fabricated 16 ×  3 crossbar array. Inset: device structure with a
thin Ta2O5−x resistive switching film sandwiched by a Ta top electrode
and a Pd bottom electrode. Scale bar, 25 μ m. d, Current–voltage (d.c.)
measurements showing the original forming process and 10 subsequent
set/reset processes. A low forming voltage and reliable resistive switching
can be obtained. e, Pulse measurement results from multiple devices
(26 cells), showing narrow distributions (σ <  0.1 V) for forming, set and
reset voltages. f, Variation of device conductance obtained from pre-
determined programming conditions without any feedback mechanism. A
5.3% conductance variation is achieved. g, With the write–verify approach
(see Methods), the conductance variation is reduced to 0.85%, making it
possible to implement the PDE solver in memristor-based hardware.

NAture eLeCtroNiCS | www.nature.com/natureelectronics

http://www.nature.com/natureelectronics

Articles NaTure elecTroNics

These grids generate coefficient matrices of sizes ranging from 81
elements to 8.1 × 105 elements, while the number of active non-zero
slices ranges from 7 to 1.42 × 103.

The output of the memristor crossbar system for the final
30 × 30 grid points is shown in Fig. 3d. The measured output was
compared with the exact solution obtained using the inverse matrix
technique for the same equation, and the mean absolute error
(MAE) was measured and plotted against the iteration number, as
shown in Fig. 3e. For comparison, results obtained from a standard
floating-point solver are also plotted. The results show that both
solutions converge at roughly the same rate with similar error fig-
ures. Ten iterations were enough for the hardware system to achieve
an MAE below 2.7% compared with the exact solutions. Figure 3f
shows three-dimensional (3D) reconstructions of the experimen-
tally obtained solution from the memristor-based solver, at differ-
ent iteration numbers. The solution after 10 iterations shows an
excellent match with the expected solution. The small differences
in the results obtained from the memristor-based solver and the
floating-point solver in Fig. 3e are due to the device variability in
the hardware system, as the precision-extension technique was
only applied to the input vectors in this experiment. By applying
the precision-extension technique to also minimize the device vari-
ation effects, a precise match between the memristor-based solver
and the floating-point solver can be obtained (see Methods and
Supplementary Figs. 5 and 6).

time-evolving problem example
The second set of PDEs that we tested using the memristor-based
hardware system are time-evolving problems. In this case, the
PDE includes partial derivatives with respect to time along with
other variables. Typically, numerical methods such as finite dif-
ference are used to map the equation to the matrix form42, and
the new state of the system is computed in an iterative manner. At
the hardware level, this process is again reduced into a series of
vector–matrix operations, where the output of the crossbar array
at one time frame is used as the input for the next iteration, as
shown in Fig. 4a.

As an example, we experimentally solved a 2D wave equation
using the memristor-based set-up. The equation is:

θ ζ∂
∂

= ∂
∂

+ ∂
∂

− ∂
∂











u
t

u
x

u
y

u
t

(3)
2

2
2

2

2

2

2

where u is the wave amplitude, θ is the wave speed constant and ζ is a
decay (damping) constant. This equation represents a classical physics
description of the propagation of 2D waves, and can be used to visual-
ize a shallow water surface in a computationally inexpensive manner43.

We solved the wave equation in a 60 × 60 grid, with a wave
speed constant of .0 37 , a decay constant of 2.5 × 10−2, spatial

1

1

0.5

0
Top
Bottom
Right
Left

u

–0.5

–1
–3 –1.5 0

x or y
1.5 3

0.5

a

f

b c

d e

0
0

0

·········
···

–rn,1

–r1,n

1 c1 cn

...

...

...

...

1

0.5

0

M
ea

su
re

d
ou

tp
ut

M
ea

n
ab

so
lu

te
 e

rr
or

–0.5

1

0.5

–0.5

–1.5
2

1

0 0
1

2

–1

0

1

0.5

–0.5

In
iti

al
 c

on
di

tio
n

M
ea

su
re

d
ou

tp
ut

M
ea

su
re

d
ou

tp
ut

–1.5
–10

8
6

4
2

0 0 2 4 6 8 10
25

20
15

10
5

0 0 5 10 15 20 25

–1

0

1

0.5

–0.5

–1.5

–1

0

–1

0.3

FP solver

HW solver0.2

0.1

0
0 0 2 4 6 8 10200 400

Output vector element Iteration number

y-grid
y-grid

x-grid
y-grid

x-grid x-grid

600 800
u

y
x

–0.5

–1
3
1.5

1.5
3

–1.5 –1.5–3 –3

0 0

∇2u = –2 sin(x) cos(y)

x (k)
1

3×3 12×12 30×30

x (k)
n

x (k+1)
1 x (k+1)

n

X(k+1) = C – R • X(k)

Fig. 3 | experimental demonstration of solving a Poisson’s equation. a, Mapping the Jacobi method (used to iteratively solve Poisson’s PDE) to a
memristor crossbar-based system. A single crossbar is shown for illustration purpose. The solution is iteratively computed by applying the vector X(k) as
voltage pulses to the rows of the crossbar and collecting the output currents at the columns which represent the numerical value of X(k+1). b, Poisson’s
equation used as a test example, and a 3D plot of the intended solution. c, The boundary conditions used in the example, measured at the four edges of the
system. d, Final measured output from the memristor-based PDE solver hardware, for the 900 grid points in the 30 ×  30 mesh. e, Evolution of the mean
absolute error for the memristor-based (hardware (HW)) solver and a floating-point (FP) solver, measured against the exact numerical solution. A coarse-
to-fine grid technique was used during the iterations, where the system started with a 3 ×  3 grid and ended with a 30 ×  30 grid. f, Reconstructions of the
initial condition (with a 3 ×  3 grid), and the measured outputs at iteration numbers 4 and 10, for grid sizes of 12 ×  12 and 30 ×  30, respectively.

NAture eLeCtroNiCS | www.nature.com/natureelectronics

http://www.nature.com/natureelectronics

ArticlesNaTure elecTroNics

steps = = .h h 0 1x y and time step Δ = .t 0 1. Using the finite-difference
method, equation (3) is re-written as:

α α α= + + ⋅+ − AU U U U() (4)k k k k(1)
1

()
2

(1)
3

()

where U is the targeted solution vector, k is the iteration number, α1,
α2, α3 are constants based on θ, ζ, hx, hy and Δ t, and A is the coef-
ficients matrix (see Methods). Using a five-point stencil to gener-
ate the coefficient matrix, the matrix A contains 1.3 × 107 elements,
but less than 0.14% of the elements are non-zero. After removing
the diagonal elements, the sparse coefficient matrix is divided into
3 × 3 patches with a total of 5,840 active slices using the software
package. These slices follow four different patterns which are then
mapped directly to four 3 × 3 crossbars in the 16 × 3 crossbar (see
Supplementary Fig. 4). Similar to the static problem example, time-
multiplexing was used to perform vector-matrix operations on the
3 × 3 crossbars for slices sharing the same pattern.

As an initial condition, we set U (1) to be a Gaussian shape repre-
senting a droplet touching the water surface. The water droplet initi-
ates the 2D wave, and iterative operations were performed through the
memristor-based system to solve the evolution of the water wave. The
input and output vectors are encoded as 16-bit numbers. Precision-
extension techniques were applied to both the input vectors and the
devices to reduce error propagation in the time-evolving iterations
(see Methods and Supplementary Fig. 6). We ran the process for 70
successive iterations to solve the wave propagation through the water
pool and its reflection from the pool edges. The initial input vector
to the system at k = 1 and the measured outputs at k = 10 and 70 are
shown in Fig. 4b. The 3D reconstructions of the solution from the
experimentally measured output of the memristor-based hardware
system are in Fig. 4c, showing a snapshot of the wave propagation at
different times, and verify the system’s ability to solve this time-evolv-
ing problem. More examples of the solutions (Supplementary Fig. 7
and Supplementary Video) are in the online Supplementary Materials.

Plasma reactor simulation
Finally, we tested the approach by inserting the memristor-based
PDE solver into the workflow of a plasma-hydrodynamics sim-
ulator. The specific problems involved simulation of a plasma
sustained in argon gas of the type commonly used in the semi-
conductor industry for etching and deposition. A schematic of
an inductively coupled plasma (ICP) reactor system is shown in
Fig. 5a (see Supplementary Note 1). Numerical PDE solvers pro-
vide the core functions of industry-standard simulators for such
systems, such as the hybrid plasma equipment model (HPEM)44
(see Methods). In this particular implementation, the simulation
goes through a hierarchy of outer loops that provide densities
of charged particles, charges on surfaces and voltage boundary
conditions on metal surfaces. These parameters are produced by
solving a set of fluid-dynamics-like equations. At the innermost
loop of the simulator is the solution of Poisson’s equation for the
electric potential at the future time t + Δ t. The particular imple-
mentation of Poisson’s equation is semi-implicit where charge
densities at time t are augmented by predictions of charge den-
sities at t + Δ t. The solution for the electric potential (and elec-
tric field) is then used to update the fluid dynamics equations to
obtain new charged particle distributions, and the process is then
repeated for each time step. Here, we directly replaced the stan-
dard floating-point solver used within the HPEM package to solve
the Poison’s equation (the DSLUCS subroutine45; see Methods)
with our memristor solver module, as shown in Fig. 5b. Care was
taken to make the process fully transparent to the user. The entire
structure of the HPEM package remained the same, with the only
change being which subroutine is called to solve the system of
PDEs—the call to DSLUCS or the call to the interface to the mem-
ristor-based solver.

The ICP system was simulated using a 94 × 52 grid mesh and a
coefficient matrix having 2.4 × 107 elements. Within the inner loop,
Poisson’s equation for electric potential is formulated as an ⋅ =A X B

In
iti

al
 c

on
di

tio
n

M
ea

su
re

d
ou

tp
ut

M
ea

su
re

d
ou

tp
ut

c

a

–0.15

0

0.15

0.3

0.45

0

1

0.75

0.5

0.25

–0.25

50
40

20
10

0 0 10 20 30
40 5030

0

500 1,000 1,500 2,000 2,500 3,000 3,500

In
iti

al
 c

on
di

tio
n,

m
ea

su
re

d
ou

tp
ut

Output vector element

k = 1

k = 1 k = 35 k = 70

k = 10
k = 70

b

= + −

U (k)

U (k+1)

д2u д2u

дx2

д2u дu

дy2 дtдt 2
θ2

y-grid
x-grid

1

0.75

0.5

0.25

–0.25

50
40

20
10

0 0 10 20 30
40 5030

0

y-grid
x-grid

1

0.75

0.5

0.25

–0.25

50
40

20
10

0 0 10
20 30

40 5030

0

y-grid
x-grid

Fig. 4 | experimental demonstration of solving a damped 2D wave equation. a, A general approach to solve time-evolving problems using memristor
crossbar arrays. The output currents represent a new estimate for the next time step. b, The initial condition (at k =  1) and the measured outputs of the
10th and 70th iterations for a damped wave equation PDE test case (inset). The test problem is iteratively solved in a 60 ×  60 grid. c, Reconstructions in
3D of the initial condition, showing a droplet touching the water surface with a Gaussian-shaped surface profile, and the measured outputs at iteration
numbers 35 and 70, where the z-axis represents the water surface level.

NAture eLeCtroNiCS | www.nature.com/natureelectronics

http://www.nature.com/natureelectronics

Articles NaTure elecTroNics

problem. As such, a similar approach to the static problem example
was used. Note although the mesh in the HPEM is structured, the
crossbar method is also applicable to unstructured meshes using
finite-element42 or finite-volume methods46. The structure of the
mesh and method of discretization of the PDEs may change the for-
mat of the A matrix but does not impact the solver’s operation. To
make certain that the crossbar approach is general enough to address
all such possibilities, we divided the matrix into 32 × 32-sized slices
assuming no common patterns in the coefficient matrix (see exam-
ples of an unstructured coefficient matrix in Supplementary Fig. 8).
Each slice was then treated independently to perform local vector–
matrix operations. A 64-bit precision was implemented in the mem-
ristor solver subroutine, by mapping every active slice to multiple
memristor crossbars through the precision-extension technique.
After solving the Poisson’s equation at each time step, the solutions
were provided to the HPEM package, the coefficient matrix updated,
and the processed was repeated. This process was performed in an
automated manner, with the memristor solver fully integrated into
the HPEM package as a standard subroutine.

Owing to the large matrix size required to address the plasma
transport, the problem was solved through simulation using a
device model that represents actual device parameters, unlike the
previous two examples which were solved experimentally using
physical memristor crossbars. The device simulator incorporates
matrix slicing and precision-extension techniques, while accounting
for device non-idealities and other circuit details. The simulation
results obtained from HPEM using the crossbar-based simulator for
solutions of Poisson’s equation are shown in Fig. 5c. The time evolu-
tion of the plasma potential inside the ICP reactor from the cross-
bar simulator are compared to the results of an otherwise identical
calculation using the standard floating-point solver based on the
DSLUCS subroutine, also shown in Fig. 5c. The memristor-based
solver produces results match well with those obtained using the
double-precision (64-bit) floating-point DSLUCS solver.

Results obtained using the memristor-based subroutine, show-
ing the time evolution of the plasma potential and the electron
density during the initial 3 μ s of the plasma ignition, are plotted

in Fig. 5c–g. The simulation clearly captured the initial quick rise
of the plasma potential and the stabilization to a quasi-steady state
after 1 μ s (Fig. 5c). The oscillation in the plasma potential with a
period of 0.1 μ s results from the application of the 10 MHz RF bias
on the substrate. Snapshots of the plasma potential and the electron
density during the initial ignition (t = 0.5 μ s) and after the plasma
stabilization (t = 3 μ s) are shown in Fig. 5d–g. These snapshots
reveal the evolution of the plasma potential and the electron den-
sity. Specifically, the electron density has a steady-state distribution
that is maximum at approximately half-radius towards the top of the
chamber, as a result of the boundary conditions and polarization of
the electric field produced by the antenna. It is in this region that
the inductively coupled electric field from the antenna is maximum,
producing a torus-shaped region of power deposition. Results from
HPEM, such as those shown in Fig. 5 that reveal the electron den-
sity distribution and plasma potential, have been extensively used
by the semiconductor industry to optimize plasma tool design and
help develop critical etching and deposition processes. The ability of
the memristor-based system to produce accurate simulation results
confirm the potential of the proposed system to mitigate device-
level limitations and provide efficient numerical computing hard-
ware systems for complex real-world applications.

Conclusions
We have demonstrated that memristor-based in-memory com-
puting systems can be used to process tasks requiring high
precision and accurate solutions, beyond what has been demon-
strated for soft computing tasks in which high device variability
may be tolerated. Despite the limited native precision offered
by the devices, architecture-level optimizations such as the pre-
cision-extension techniques proposed here can effectively lead
to computations achieving 64-bit accuracy. We experimentally
demonstrated a high-precision memristor crossbar-based PDE
solver. Using a tantalum oxide memristor crossbar, we solved
elliptic and hyperbolic PDE equations representing static and
time-evolving systems, for the widely used Poisson’s equation
and a classical water wave propagation problem, respectively. We

Pump

Pump

RF bias
power

Ar gas flow

PDE
solver

H
P

E
M

F
K

P
M

a b

r (cm)

g

r (cm)

f

r (cm)

z
(c

m
)

r (cm)

ed

c

IMN

IMN

8

6

4

2

0
0 2 4 6 8

8

6

4

2

0
0 2 4 6 8

8

6

4

2

0

0 2 4 6 8

70 V

–80 V

70 V

–80 V

1.5 × 1011

cm–3

0 cm–3

1.5 × 1011

cm–3

0 cm–3

8

6

4

2

0
0 2 4 6 8

Substrate

Wafer

0

30

60

90

120

0 0.5 1 1.5 2 2.5 3
Time (μs)

DSLUCS

P
la

sm
a

po
te

nt
ia

l (
V

)

M
et

al
 w

al
l

Memristor solver

Inductively
coupled power

source

z
(c

m
)

z
(c

m
)

z
(c

m
)

Fig. 5 | Argon plasma reactor simulation. a, A 3D illustration representing the plasma reactor chamber to be simulated. IMN, impedance-matching
network. b, Schematic of the HPEM package. The HPEM iteratively calls a fluid kinetics Poisson module (FKPM) that in turn calls a subroutine to compute
the numerical solutions of Poisson’s equations. c, Simulation results of the plasma reactor showing the plasma potential versus time during the plasma
ignition process, for results obtained using the standard floating-point solver (DSLUCS) and the memristor-based solver . The system is solved in a 94 ×  52
mesh, representing only the right half of the chamber owing to its symmetry. The argon gas pressure is 20 mTorr, the power delivered by the antenna is
150 W and the radiofrequency (RF) bias on the substrate has a 100 V amplitude. d,e, Contour maps of the computed plasma potential using the memristor
solver at t =  0.5 μ s (d) and t =  3 μ s (e). r is the radius of the reactor chamber. f,g, Contour maps of the computed electron density using the memristor
solver at =  0.5 μ s (f) and t  =  3 μ s (g).

NAture eLeCtroNiCS | www.nature.com/natureelectronics

http://www.nature.com/natureelectronics

ArticlesNaTure elecTroNics

further incorporated the crossbar-based PDE solver in a large-
scale simulation package, HPEM, and used the package to simulate
a real-world system: plasma evolution in an ICP reactor with accu-
racies matching those obtained from floating-pointing solvers.

Our studies showed that challenges including device variabil-
ity, limited equivalent precision and limited on/off ratio can be
successfully addressed even for high-precision computing tasks.
Additionally, the precision-extension approach used in our work
allows the system to dynamically adjust the system precision
as needed, and thus can efficiently allocate hardware resources
depending on the task requirement on hand. As a result, a com-
mon hardware platform may be used to process different tasks,
including both soft computing and hard computing problems. We
believe that such demonstrations, showing that memristor cross-
bars can be used to directly solve high-precision computing tasks
(instead of playing a supporting role to a digital system), broaden
the appeal of memristor-based hardware systems and pave the way
for the development of more general-purpose, memristor-based
computing systems17.

We anticipate a fully integrated computing system based on
arrays of memristor crossbars monolithically integrated on com-
plementary metal-oxide-semiconductor supporting circuitry26
(Supplementary Notes 1 and Supplementary Fig. 9) can offer a
scalable computing system with very high processing speeds and
power efficiency, owing to its ability to natively compute informa-
tion in-memory and to its high level of parallelism. Our analysis,
after accounting for the power consumption in the crossbar and
peripheral circuitry, shows that the proposed memristor-based in-
memory computing system can considerably outperform existing
and emerging approaches including application-specific integrated
circuits (Supplementary Notes 2 and Supplementary Fig. 10), and
suggest the proposed memristor-based computing hardware system
is well positioned for soft as well as hard data-intensive computing
tasks now and in the future.

Methods
Partial differential equation. A PDE is any equation with a function of multiple
variables and their partial derivatives. Let u be a function with independent
variables …t x x, , , n1 , defined as:

= …u u t x x x(, , , ,) (5)n1 2

A general PDE of u has the form:

… ∂
∂

∂
∂

… ∂
∂

∂
∂

… ∂
∂ ∂

… =










f t x x u u
t

u
x

u
x

u
t

u
x x

, , , , , , , , , , , , 0 (6)n
n n

1
1

2

2

2

1

The order of equation (6) is determined by the order of the highest partial
derivative appearing in the equation.

Software package CPHS. A Python-based software package provides system-
level functions to the hardware solver and controls the hardware operation. The
program, Crossbar PDE Hardware Solver (CPHS), performs high-level operations
such as coefficient matrix slicing and precision-extension. These system-level
operations transform the process of solving a PDE problem into a set of matrix
operations that are in turn computed in the memristor crossbar hardware.
Specifically, CPHS provides control signals to the system’s PCB to manage modules
such as analogue-to-digital converters (ADCs), digital-to-analogue converters
(DACs) and multiplexers to send signals to and collect data from the memristor
crossbar. The results (typically partial products) collected from the hardware set-
up are then used to reconstruct the final output of the system. A graphical user
interface for CPHS was developed to ease the design and analysis processes (see
Supplementary Fig. 1 and 2).

CPHS also supports modules based on exact and iterative floating-point
methods, as well as simulations using realistic memristor device models for
comparison and analysis of the system performance. CPHS enables users to readily
update device parameters such as the crossbar size and the number of bits per
device, as well as other parameters in the circuitry.

Memristor array fabrication and characterization. A Ta2O5–x-based memristor
crossbar array was used to implement the PDE solver in hardware. Starting

from a SiO2/Si substrate, the bottom electrode (Pd, 50 nm thick) was patterned
by photolithography, electron-beam evaporation and lift-off processes. The
3.5-nm-thick Ta2O5–x switching layer was deposited by RF sputtering, using low
power (30 W) and a slow deposition rate (about 1.1 Å min−1). The top Ta (40 nm)
electrode was deposited by photolithography and d.c. sputtering (100 W), followed
by electron-beam evaporation of a passivation layer (Pd 25 nm + Au 75 nm) and
lift-off processes. Finally, a reactive ion etching process (SF6/Ar) was performed
to expose the bottom contacts. Characterization of the Ta2O5–x-based memristors
was performed using either a Keithley semiconductor parameter analyser tool (for
stand-alone cells), or a custom-built system including a test board (for crossbar
array measurements and PDE solver implementation).

Test board system. A custom-built PCB test board was developed to measure the
memristor crossbar array and implement the PDE solver along with the software
package CPHS. The board can send and retrieve signals from up to 32 rows and
32 columns. Pulse signals needed for set/reset and read operations are generated
from four independent DACs, two of which (DAC0 and DAC1) are used for rows
and two (DAC2, DAC3) for columns. The signals are delivered to the selected rows
or columns through switching matrices on the board. During read (computing)
operation, the output node (typically a column) is connected to a sensing circuit
and the output current is converted to a voltage signal and processed by an ADC.
The board is controlled by a mixed code based on Python and C.

Write–verify technique. To reduce the memristor device variability, we used a
write–verify technique to write and update the coefficient values in the crossbar.
Specifically, each write operation is based on a sequence of write–read pulse pairs,
each pair including a programming (set or reset) pulse and a subsequent read
pulse (0.3 V, 100 μ s) for verification purpose. By comparing the read current with
a target value of the cell, the programming pulse in the next pair in the sequence is
determined: that is, set (reset) for conductance increase (decrease). Each set (reset)
pulse has a fixed duration (1 μ s) but gradually increasing voltage levels to achieve
the desired conductance value (0.75 V to 0.9 V for set, − 0.85 V to − 1.05 V for reset).
When the conductance reaches within a pre-determined range of the target value
(for example 1%), the write operation is considered complete. Supplementary Fig. 3
shows a flow chart for the write–verify process. In the experimental implementation,
the initial write sequence (with the device in the high-resistance state) typically
requires 100 write–verify pairs on average, while updating the coefficients later on
typically requires around 10 write–verify pairs in a write sequence.

Precision-extension technique. Precision extension is a system-level technique
we proposed to improve the effective precision of memristor-based hardware.
In this case, a high precision can be provided through multiple devices together,
each of which stores a portion of the required bitwidth. The same technique is
also used to implement the required precision of the input and output analogue
data to and from the crossbar array, by representing a high-precision data using
multiple splits.

The approach here is to treat the data in a base-l number system, where l is the
number of levels represented by a single digit. For example, operations of 12-bit
numbers can be processed in a physical system based on six-bit devices: thus,
12-bit vectors X and Y can be represented as:

= =





















a a

b b

c c
X X X

(,)

(,)

(,)
(,) (7)

l

l

l

l

1 0

1 0

1 0

1 0

= =























d d

e e

f f
Y Y Y

(,)

(,)

(,)
(,) (8)

l

l

l

l

1 0

1 0

1 0

1 0

where X X Y Y, , ,1 0 1 0 are six-bit vectors. A dot product between the two vectors is
performed as:

⋅ = ⋅ + ⋅ + ⋅ + ⋅l l lX Y X Y X Y X Y X Y() () () () (9)0 0 0 1 1 0
2

1 1

where l and l2denote single and double digit shifts. Each partial dot product is
computed as at the (native) single digit level:

⋅ = + +a d b e c fX Y (10)i j i j i j i j

Equation (10) can be directly executed in a memristor crossbar by encoding
a b c{ , , }i i i as the input voltages applied to different rows and d e f{ , , }j j j

 as the
memristors’ conductance values along a column. The results of the partial products
are summed together according to equation (9) to obtain the full dot product
result. Other arithmetic operations with the extended precision can be performed
similarly by splitting the high-precision operations into partial operations. Similar
techniques to improve the precision of memristor-based hardware systems have
been proposed for neural network type of applications24–28.

NAture eLeCtroNiCS | www.nature.com/natureelectronics

http://www.nature.com/natureelectronics

Articles NaTure elecTroNics

To properly implement the precision-extension technique, the partial products
need to be quantized before the digit shift operations, otherwise noise (error) in
the analogue output due to device variation becomes amplified during the digit
shift and reduces the precision of the final output. Fortunately, the quantization
operation can be readily implemented in the existing circuitry through the ADC
circuitry that is already used in the hardware to quantize analogue outputs to
digital values. In a typical ADC operation, any analogue value within quantization
thresholds is represented by the same quantized value, thus preventing the noise
in the analogue signal from being amplified during the shift operation (see
Supplementary Fig. 6), and enable the shift operations to perform properly.

Specifically, the required number of ADC bits is determined by the sum of the
input bits, the stored coefficient (weight) bits, and the number of non-zero inputs
per column, as defined in24:

ω= + +b b b log (11)ADC i d 2

where bi is the number of bits of the input, bd is the equivalent number of bits
of each memristor device, and ω is the number of non-zero inputs per column,
although this bitwidth requirement may be reduced slightly through architecture
optimizations24. By designing ADCs with the right number of bits based on
equation (11) (instead of pursuing as many bits as possible), the ADC area
and power consumption overhead can be minimized while also providing the
desirable quantization effect to minimize error propagation during the shift
operations. Indeed, our simulations and experiments verify that combining the
ADC quantization effect with the precision-extension technique can reliably
lead to high-precision operation (for example, 64 bits) of the memristor-based
hardware, even though the native device precision is much lower, for example
4-bit. Additionally, a normalization (scaling) step can be introduced to improve the
dynamic range of the fixed-point solver. In this approach, a global exponent field is
used for all values, and the radix point location for all elements in the input vector
can be shifted together to improve the dynamic range if needed. The normalization
can be performed at either the initialization stage or during iterations, depending
on the precision requirement of the problem.

Finite-difference method. The finite-difference method (FDM) is a numerical
technique to solve partial (or ordinary) differential equations by discretizing the
partial derivatives using difference equations. Given a set of regularly distributed
grid points of fixed separation, the FDM approximates the partial derivatives at each
point using its neighbouring values based on Taylor’s theorem42. For instance, a first
derivative can be approximated in a 1D system using the nearest neighbour points as:

≈
−+u

x
u u

h
Forward : d

d
(12)i i1

≈
− −u

x
u u

h
Backward : d

d
(13)i i 1

 ≈
−+ −u

x
u u

h
Central : d

d 2
(14)i i1 1

where h is the spacing between two grid points, i is the index of the desired grid
point, and i − 1 and i + 1 are the indices of the neighbouring points. The forward,
backward and central approximations depend on the direction equation used.
Higher-accuracy approximations can be achieved by using more neighbouring
points. The technique is not limited to fixed mesh spacing, although we use fixed
meshing spacing here for simplicity.

In this study, we used a central approximation to represent the second-order
derivatives of the elliptic and hyperbolic PDEs that are mapped to the hardware
system. For example, a second-order partial derivative with respect to variable x for
a 2D system in Cartesian coordinates is:

∂
∂

≈
− ++ −u

x

u u u

h

2
(15)i j i j i j

2

2
1, , 1,

2

where i is the x-axis grid index, j is the y-axis grid index and h is the distance
between two neighbouring grid points along the x- or y-axis. Hence, partial
derivatives at a point can be expressed by values at its neighbouring points. The
pre-factors (coefficients) in the expressions are summarized as coefficient tables for
a given order and accuracy during the discretization process.

For instance, the gradient relation in a 2D space can be described using central
difference as:

∇ = ∂
∂

+ ∂
∂

≈
+ − + ++ + − −u u

x
u

y

u u u u u

h

4
(16)i j i j i j i j i j

2

2

2

2
1, , 1 , 1, , 1

2

where h is the distance between two neighbouring grid points along the x-axis
or the y-axis. Here, each point is related to its four neighbouring points using
coefficients of 1,1,–4,1,1. Such relations can be graphically represented using
stencils, where the size of a stencil is defined by the number of points each point is
related to (see Supplementary Fig. 11). Hence, equation (16) is described using a
five-point stencil.

Finally, the discretized equation is mapped into a coefficient matrix, where
each row in the coefficient matrix describes the relation between a point and the
other points in the grid. The dimension of the (square) coefficient matrix, that is,
the number of elements per row, is equal to the total number of grid points in the
mesh and can thus be very large. However, the number of non-zero elements per
row equals the stencil size (for non-edge grid points), resulting in highly sparse
coefficient matrices.

Jacobi method. The Jacobi iterative method was used to solve elliptic PDE systems.
The Jacobi method is a numerical technique used to solve diagonally dominant
linear systems, ⋅ =A X B, where:

=
⋯

⋮ ⋱ ⋮
⋯

= ⋮ = ⋮A
a a

a a

b

b

x

x
B X[], [] and [] (17)

n

n nn n n

11 1

1

1 1

The iterative solution is obtained from:

=
− ∑

= …+ ≠x
b a x

a
i n, 1, 2, , (18)i

k i j i ij j
k

ii

(1)
()

Equation (17) can be written in a matrix form as:

= − ⋅+ −D MX B X() (19)k k(1) 1 ()

where D is a matrix with only the diagonal elements of A, and M contains the
remaining elements of A. In the case where the diagonal elements are equal, which
is common, equation (19) is simplified as:

= − ⋅+

d
MX B X1 () (20)k k(1) ()

where d is the common diagonal element.
We note that any scientific or engineering system that includes transport

phenomena or reaction chemistry (such as fluid dynamics or radiation transport) that
is modelled for chemical engineering, combustion, fluid mechanics, solid state physics
and nuclear engineering, in addition to plasma physics, is of a diagonally dominant
matrix. Thus, the vast majority of the PDE problems are diagonally dominant and
can be solved by the proposed method in this work. It should be noted, however, that
diagonally dominant coefficient matrices do not have to be structured. As shown in
Supplementary Fig. 8a,b, an unstructured matrix can be divided into slices that are
diagonally dominant and mapped into the crossbar system.

Poisson’s equation mapping. The Poisson’s equation described in equation (2) is
mapped to the crossbar hardware system by first approximating it using central
FDM and a common 2D five-point stencil as

+ − + +
= −+ + − −u u u u u

h
x y

4
2 sin()cos() (21)i j i j i j i j i j

i i
1, , 1 , 1, , 1

2

where i is the x-axis grid index, j is the y-axis grid index and h is the distance
between two neighbouring grid points along the x-axis or y-axis. In an example
where the problem’s domain is discretized into a 3 × 3 grid (excluding boundary
points), equation (21) is transformed into a matrix form as:

−
−

−
−

−
−

−
−

−

⋅

=

− −

−

− −

−

−

− −

−

− −

− −

−

−

−

−







































































































u
u
u
u
u
u
u
u
u

h f x y b b

h f x y b

h f x y b b

h f x y b

h f x y

h f x y b

h f x y b b

h f x y b

h f x y b b

4 1 0 1 0 0 0 0 0
1 4 1 0 1 0 0 0 0
0 1 4 0 0 1 0 0 0
1 0 0 4 1 0 1 0 0
0 1 0 1 4 1 0 1 0
0 0 1 0 1 4 0 0 1
0 0 0 1 0 0 4 1 0
0 0 0 0 1 0 1 4 1
0 0 0 0 0 1 0 1 4

(,)

(,)

(,)

(,)

(,)

(,)

(,)

(,)

(,)

(22)

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

2
0 0 1,0 0, 1

2
0 1 1,1

2
0 2 1,2 0,3

2
1 0 1, 1

2
1 1

2
1 2 1,3

2
2 0 2, 1 3,0

2
2 1 3,1

2
2 2 2,3 3,2

NAture eLeCtroNiCS | www.nature.com/natureelectronics

http://www.nature.com/natureelectronics

ArticlesNaTure elecTroNics

where =f x y x y(,) sin()cos()i j i i , and bi j, are the boundary values of the system.
Similar matrices can be obtained for larger grids. It should be noted that the

sparsity of the coefficient matrix is a function of the mesh size, with larger meshes
leading to more sparse matrices, since the matrix dimension is determined by the
total number of grid points, while the number of non-zero elements equals the
fixed (small) stencil size. A typical stencil size is 5 for second-order 2D PDEs, while
the matrix dimension can be very large (for example, with 900 elements in a row
for a small 30 × 30 grid), leading to very sparse matrices. Equation (22) is in the
form of ⋅ =A X B, and can be solved using the Jacobi method as:

where the constant vector C equals − B/4 in this example. Afterwards, the system is
mapped to the memristor crossbar hardware and solved as described in the main text.

Two-dimensional wave PDE mapping. To map the 2D wave system described in
equation (3) to the hardware set-up, we first discretized it following FDM as:

θ

ζ

− +

Δ
=

+ − + +

−
−
Δ

+ −
+ + − −

−

























u u u

t

u u u u u

h

u u
t

2

()

4

(24)

i j
t

i j
t

i j
t

i j
t

i j
t

i j
t

i j
t

i j
t

i j
t

i j
t

,
(1)

,
()

,
(1)

2
2 1,

()
, 1
()

,
()

1,
()

, 1
()

2

,
()

,
(1)

where u represents the wave height, i is the x-axis grid index, j is the y-axis grid
index, h is the distance between two neighbouring grid points along the x-axis or
y-axis, t is the time index, Δ t is the numerical time step, θ is the wave speed and
ζ is the decay (damping) constant. Here, central FDM is used for the second-order
partial derivatives, and backward FDM is used for the first-order partial derivative.
Equation (24) can be re-written in a five-point stencil format as:

ζΔ ζΔ

θΔ

= − + −

+ + − + +

+ −

+ + − −








u t u t u

t
h

u u u u u

(2) (1)

(4)
(25)

i j
t

i j
t

i j
t

i j
t

i j
t

i j
t

i j
t

i j
t

,
(1)

,
()

,
(1)

2

1,
()

, 1
()

,
()

1,
()

, 1
()

and mapped to a matrix form as (shown for a 3 × 3 grid for illustration purposes):

α α= +

α+

−
−

−
−

−
−

−
−

−

⋅

+ −

































































































































































































u
u
u
u
u
u
u
u
u

u
u
u
u
u
u
u
u
u

u
u
u
u
u
u
u
u
u

(26)
u
u
u
u
u
u
u
u
u

4 1 0 1 0 0 0 0 0
1 4 1 0 1 0 0 0 0
0 1 4 0 0 1 0 0 0
1 0 0 4 1 0 1 0 0
0 1 0 1 4 1 0 1 0
0 0 1 0 1 4 0 0 1
0 0 0 1 0 0 4 1 0
0 0 0 0 1 0 1 4 1
0 0 0 0 0 1 0 1 4

t t t
0,0

0,1

0,2

1,0

1,1

1,2

2,1

2,2

1,2

(1)

1

0,0

0,1

0,2

1,0

1,1

1,2

2,1

2,2

1,2

()

2

0,0

0,1

0,2

1,0

1,1

1,2

2,1

2,2

1,2

(1)

t

3

0,0

0,1

0,2

1,0

1,1

1,2

2,1

2,2

1,2

()

where the constants α ζΔ= − t21 , α ζΔ= −t 12 and α θΔ= ∕t h()3
2. Similar to the

Poisson’s equation case, the maximum number of non-zero elements in each row
equals the stencil size (5), while the row length equals the total number of grid
points. This results in highly sparse coefficient matrices.

Hybrid plasma equipment model simulator. The HPEM44 is a 2D fluid-kinetic
hydrodynamics simulation package used for the investigation of low-pressure
(1 mTorr to 1 Torr) and low-temperature (Te < tens of eV) plasma processing
reactors. The HPEM has a hierarchical structure in which different modules

addressing different physical phenomena are sequentially executed in an iterative
manner (see Supplementary Fig. 12). In this study, the major modules used are
the electromagnetics module (EMM), the electron energy transport module
(EETM) and the FKPM. The EMM solves the inductively coupled electromagnetic
fields based on the applied azimuthal currents in the ICP coils using a frequency
domain solution of Maxwell’s equations. The EETM solves the spatially dependent
electron energy distributions using an electron Monte Carlo simulation, which
then provides electron impact source functions for inelastic collisions and electron
transport coefficients. In the FKPM, owing to the tight coupling of electrostatic
fields to the densities of charged particles, the Poisson’s equation is solved self-
consistently with the continuity, momentum and energy equations for all heavy
particles. An iteration in HPEM consists a complete cycle through these modules
which sequentially receive and provide data between them. In the FKPM, given
the charge distribution in the plasma region and the boundary conditions
(d.c. bias and applied voltage waveform on the electrodes and charges accumulated
on the surface of the dielectrics), the 2D Poisson’s equations are solved using two
approaches, the DSLUCS45 and the memristor crossbar-based PDE solver, for the
present electrostatic potentials.

Integrating the memristor PDE solver with HPEM. The HPEM uses a finite-
volume method to generate coefficient matrices for Poisson’s equation in the
FKPM module. The matrices are then handed to the memristor PDE solver. The
matrices are sliced into 32 × 32 patches by the solver’s software, with all diagonal
elements removed to prepare it for the numerical Jacobi method processes.
Precision-extension techniques are used to implement the matrix operations at 32
bits. Afterwards, the results are supplied to the HPEM code for the next operation.
To represent positive and negative coefficients, two matrices, representing
respectively the positive and negative numbers, were used, with precision extension
applied to each of them separately.

DSLUCS subroutine. DSLUCS45 is a Fortran language subroutine used to solve
linear ⋅ =A X B systems using the biconjugate gradient squared method with
Incomplete LU decomposition preconditioning technique. The DSLUCS is used by
the HPEM software as the default ⋅ =A X B numerical solver.

Mean absolute error. We calculated the error between the computed numerical
result and the exact solution using the MAE, which is defined as:

=
∑ ∣ − ∣=

− x x

n
MAE (27)j

n
j j0

1 E N

where xE is the exact solution of the problem, xN is the numerically computed
solution either using the memristor PDE solver or a floating-point solver, and n is
the number of grid points.

Data availability. The data that support the plots within this paper and
other findings of this study are available from the corresponding author upon
reasonable request.

Received: 26 January 2018; Accepted: 14 June 2018;
Published: xx xx xxxx

references
 1. Simon, H., Zacharia, T. & Stevens, R. Modeling and Simulation at the

Exascale for Energy and the Environment (Department of Energy Technical
Report, 2007).

 2. Palmer, T. Build imprecise supercomputers. Nature 526, 32–33 (2015).
 3. Aage, N., Andreassen, E., Lazarov, B. S. & Sigmund, O. Giga-voxel

computational morphogenesis for structural design. Nature 550, 84–86 (2017).
 4. Altrock, P. M., Liu, L. L. & Michor, F. The mathematics of cancer: integrating

quantitative models. Nat. Rev. Cancer 15, 730–745 (2015).
 5. Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather

prediction. Nature 525, 47–55 (2015).
 6. Achdou, Y., Buera, F. J., Lasry, J.-M., Lions, P.-L. & Moll, B. Partial

differential equation models in macroeconomics. Philos. Trans. R. Soc. A 372,
20130397 (2014).

 7. Dongarra, J. J. et al. The International Exascale Software Project roadmap.
Int. J. High. Perform. Comput. 25, 3–60 (2011).

 8. Nair, R. Evolution of memory architecture. Proc. IEEE 103, 1331–1345 (2015).
 9. Kogge, P. et al. Exascale Computing Study: Technology Challenges in Achieving

Exascale Systems (DARPA, 2008).
 10. Nair, R. et al. Active memory cube: a processing-in-memory architecture for

exascale systems. IBM J. Res Dev. 59, 1–7 (2015).
 11. Jeddeloh, J. & Keeth, B. Hybrid memory cube new DRAM architecture

increases density and performance. In Proc. IEEE Symposium on VLSI
Technology (VLSIT) 87–88 (IEEE, 2012).

 12. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing
memristor found. Nature 453, 80–83 (2008).

= +

∕ ∕
∕ ∕ ∕

∕ ∕
∕ ∕ ∕

∕ ∕ ∕ ∕
∕ ∕ ∕

∕ ∕
∕ ∕ ∕

∕ ∕

⋅

+

























































































































u
u
u
u
u
u
u
u
u

u
u
u
u
u
u
u
u
u

C

0 1 4 0 1 4 0 0 0 0 0
1 4 0 1 4 0 1 4 0 0 0 0

0 1 4 0 0 0 1 4 0 0 0
1 4 0 0 0 1 4 0 1 4 0 0

0 1 4 0 1 4 0 1 4 0 1 4 0
0 0 1 4 0 1 4 0 0 0 1 4
0 0 0 1 4 0 0 0 1 4 0
0 0 0 0 1 4 0 1 4 0 1 4
0 0 0 0 0 1 4 0 1 4 0

(23)

k k
0,0

0,1

0,2

1,0

1,1

1,2

2,1

2,2

1,2

(1)
0,0

0,1

0,2

1,0

1,1

1,2

2,1

2,2

1,2

()

NAture eLeCtroNiCS | www.nature.com/natureelectronics

http://www.nature.com/natureelectronics

Articles NaTure elecTroNics

 13. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing.
Nat. Nanotech. 8, 13–24 (2013).

 14. Wong, H.-S. P. et al. Metal–oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).
 15. Prezioso, M. et al. Training and operation of an integrated neuromorphic

network based on metal-oxide memristors. Nature 521, 61–64 (2015).
 16. Sheridan, P. et al. Sparse coding with memristor networks. Nat. Nanotech. 12,

784–789 (2017).
 17. Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on

memristive systems. Nat. Electron. 1, 22–29 (2018).
 18. Ielmini, D. Modeling the universal set/reset characteristics of bipolar RRAM

by field- and temperature-driven filament growth. IEEE Trans. Electron
Devices 58, 4309–4317 (2011).

 19. Kim, K.-H. et al. A functional hybrid memristor crossbar-array/CMOS
system for data storage and neuromorphic applications. Nano Lett. 12,
389–395 (2011).

 20. Waser, R. & Aono, M. Nanoionics-based resistive switching memories.
Nat. Mater. 6, 833–840 (2007).

 21. Li, C. et al. Analogue signal and image processing with large memristor
crossbars. Nat. Electron. 1, 52–59 (2018).

 22. Feinberg, B., Vengalam, U., Whitehair, N., Wang, S. & Ipek, E. Enabling
scientific computing on memristive accelerators. In ACM/IEEE Int. Symp. on
Computer Architecture (ACM/IEEE, 2018).

 23. Hu, M. et al. Dot-product engine for neuromorphic computing: programming
1T1M crossbar to accelerate matrix-vector multiplication. In ACM/EDAC/
IEEE Design Automation Conf. 1–6 (ACM/EDAC/IEEE, 2016).

 24. Shafiee, A. et al. ISAAC: a convolutional neural network accelerator with
in-situ analog arithmetic in crossbars. In ACM/IEEE Ann. Int. Symp. on
Computer Architecture 14–26 (ACM/IEEE, 2016).

 25. Chi, P. et al. PRIME: a novel processing-in-memory architecture for neural
network computation in ReRAM-based main memory. In ACM/IEEE Ann.
Int. Symp. on Computer Architecture 27–39 (ACM/IEEE, 2016).

 26. Zidan, M. A. et al. Field-programmable crossbar array (FPCA) for
reconfigurable computing. IEEE Trans. Multi-Scale Comput. Syst. https://doi.
org/10.1109/TMSCS.2017.2721160 (2017).

 27. Song, L., Qian, X., Li, H. & Chen, Y. PipeLayer: a pipelined ReRAM-based
accelerator for deep learning. IEEE Int. Symp. on High Performance Computer
Architecture 541–552 (IEEE, 2017).

 28. Bojnordi, M. N. & Ipek, E. Memristive Boltzmann machine: a hardware
accelerator for combinatorial optimization and deep learning. IEEE Int. Symp.
on High Performance Computer Architecture 1–13 (IEEE, 2016).

 29. Zidan, M. A., Chen, A., Indiveri, G. & Lu, W. D. Memristive computing
devices and applications. J. Electroceram. 39, 4–20 (2017).

 30. Neftci, E., Pedroni, B. U., Joshi, S., Al-Shedivat, M. & Cauwenberghs, G.
Stochastic synapses enable efficient brain-inspired learning machines.
Front. Neurosci. 10, 241 (2016).

 31. Yu, S. et al. Scaling-up resistive synaptic arrays for neuro-inspired
architecture: challenges and prospect. In IEEE Int. Electron Devices Meeting
17.3.1–17.3.4 (IEEE, 2015).

 32. Alibart, F., Gao, L., Hoskins, B. D. & Strukov, D. B. High precision tuning of
state for memristive devices by adaptable variation-tolerant algorithm.
Nanotechnology 23, 075201 (2012).

 33. Richter, I. et al. Memristive accelerator for extreme scale linear solvers.
In Government Microcircuit Applications & Critical Technology Conf.
(GOMACTech) (2015).

 34. Gallo, M. L. et al. Mixed-precision in-memory computing. Nat. Electron. 1,
246–253 (2018).

 35. Jeong, Y., Zidan, M. A. & Lu, W. D. Parasitic effect analysis in memristor
array-based neuromorphic systems. IEEE Trans. Nanotechnol. 17, 184–193 (2018).

 36. Choi, S., Shin, J. H., Lee, J., Sheridan, P. & Lu, W. D. Experimental
demonstration of feature extraction and dimensionality reduction using
memristor networks. Nano Lett. 17, 3113–3118 (2017).

 37. Guan, X., Yu, S. & Wong, H.-S. P. On the switching parameter variation of
metal-oxide RRAM—Part I: Physical modeling and simulation methodology.
IEEE Trans. Electron Devices 59, 1172–1182 (2012).

 38. Jo, S. H., Kim, K.-H. & Lu, W. Programmable resistance switching in
nanoscale two-terminal devices. Nano Lett. 9, 496–500 (2008).

 39. Alibart, F., Gao, L., Hoskins, B. D. & Strukov, D. B. High precision tuning of
state for memristive devices by adaptable variation-tolerant algorithm.
Nanotechnology 23, 075201 (2012).

 40. Kim, K. M. et al. Voltage divider effect for the improvement of variability and
endurance of TaOx memristor. Sci. Rep. 6, 20085 (2016).

 41. Gilbarg, D. & Trudinger, N. S. Elliptic Partial Differential Equations of Second
Order (Springer, Berlin, 2015).

 42. Ames, W. F. Numerical Methods for Partial Differential Equations
(Academic, New York, 2014).

 43. Nishidate, Y. & Nikishkov, G. P. Fast water animation using the wave
equation with damping. Int. Conf. on Computational Science
232–239 (Springer, 2005).

 44. Kushner, M. J. Hybrid modelling of low temperature plasmas for
fundamental investigations and equipment design. J. Phys. D 42,
194013 (2009).

 45. SLAP Sparse Matrix Library (accessed 6 Jan 2017); http://www.netlib.org/
 46. Eymard, R., Gallouët, T. & Herbin, R. in Handbook of Numerical Analysis

(eds Ciarlet, P. G. & Lions, J. L.) 713–1018 (Elsevier, 2000).

Acknowledgements
We acknowledge inspiring discussions with Z. Zhang, J. Moon and T. Chen. This work
was support by the Defense Advanced Research Projects Agency (DARPA) through
award HR0011-17-2-0018 and by the National Science Foundation (NSF) through
grant CCF-1617315.

Author Contributions
M.A.Z. and W.D.L. conceived the project and constructed the research frame. M.A.Z.,
Y.J., J.L. and B.C. prepared the memristor arrays and built the hardware and software
package. M.A.Z. and Y.J. performed the hardware measurements. M.A.Z, Y.J., S.H.,
M.J.K. and W.D.L. analysed the experimental data and simulation results. W.D.L. directed
the project. All authors discussed the results and implications and commented on the
manuscript at all stages.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41928-018-0100-6.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to W.D.L.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

NAture eLeCtroNiCS | www.nature.com/natureelectronics

https://doi.org/10.1109/TMSCS.2017.2721160
https://doi.org/10.1109/TMSCS.2017.2721160
http://www.netlib.org/
https://doi.org/10.1038/s41928-018-0100-6
https://doi.org/10.1038/s41928-018-0100-6
http://www.nature.com/reprints
http://www.nature.com/natureelectronics

	A general memristor-based partial differential equation solver

	High-precision memristor computing system

	Poisson’s equation example

	Time-evolving problem example

	Plasma reactor simulation

	Conclusions

	Methods

	Partial differential equation
	Software package CPHS
	Memristor array fabrication and characterization
	Test board system
	Write–verify technique
	Precision-extension technique
	Finite-difference method
	Jacobi method
	Poisson’s equation mapping
	Two-dimensional wave PDE mapping
	Hybrid plasma equipment model simulator
	Integrating the memristor PDE solver with HPEM
	DSLUCS subroutine
	Mean absolute error
	Data availability

	Acknowledgements

	Fig. 1 High-precision PDE solver based on memristor crossbar.
	Fig. 2 Hardware set-up and device measurement.
	Fig. 3 Experimental demonstration of solving a Poisson’s equation.
	Fig. 4 Experimental demonstration of solving a damped 2D wave equation.
	Fig. 5 Argon plasma reactor simulation.

