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Numerical computations, such as solving partial differential 
equations (PDEs), are ubiquitous in scientific research and 
engineering1–4, as are many other tasks that involve simula-

tion, prediction and optimization, such as weather forecasting5 and 
economics6. Analytical PDE solutions are rare, and the vast majority 
of systems of PDEs are solved (or integrated) using numerical meth-
ods that are computationally expensive, involving iterative vector–
matrix operations with massive amounts of data. In fact, the most 
powerful supercomputers are normally built to carry out such large-
scale numerical computation tasks1,7. The limit in efficiency can be 
traced to the classical von Neumann computing architecture with 
separate memory and processing units8,9, which is the same root 
cause that affects the hardware performance of other data-centric 
applications9–11. Compared with soft computing tasks such as arti-
ficial neural networks, solving PDEs can be considerably more dif-
ficult because it typically requires high precision during operations 
to ensure convergence and an accurate solution. Additionally, the 
matrices used are typically extremely large, magnifying the hard-
ware challenges.

Recent advances in emerging devices such as memristors12–17 
offer promising alternatives to the classical computing architecture. 
As a memory device, often termed resistive random-access memory 
(RRAM), a memristor stores data with its different resistance values: 
for example, ‘0’ may be represented by a high-resistance state and 
‘1’ may be represented by a low-resistance state2–20. Programming 
the device between the resistance states is achieved with a write/
erase voltage above a threshold, and data readout is achieved with 
a read voltage below the threshold. Besides data storage, the device 
acts as a two-terminal switch that directly modulates the current 
passing through it, based on the resistance values14–17. Hence, mem-
ristors can be used to physically perform analogue multiplication 
in-memory, where the current that passes through the device is 
equal to the applied voltage multiplied by the stored conductance 
value, without having to retrieve data from a separate memory17. 
With this approach, common ‘multiply and accumulate’ operations 

can be achieved by arranging the devices in a crossbar structure, 
where the output current of a column represents the dot product 
between the input voltage vector and the device conductance vector 
associated with the column, following Ohm’s law and Kirchhoff ’s 
current law15–17,21–25.

The co-location of memory and logic, and the high parallel-
ism offered by the crossbar structure (in which vector–matrix 
multiplication can be carried out in a single readout operation), 
have generated strong interest in memristor-based computing 
systems15–17,21–28. So far, the focus has been on tasks such as arti-
ficial neural networks15,16,23–28, which typically aim to obtain an 
approximate or qualitative solution and can thus tolerate lim-
ited precision and device variabilities29–31. This is not the case 
for numerical computational tasks such as solving PDE prob-
lems, where high-precision and accurate solutions are manda-
tory, making it more challenging to implement these computing 
tasks in memristor-based hardware. For example, a well-designed 
memristor device may provide around 64 different resistance lev-
els21,32, which is equivalent to six binary bits. However, practical 
numerical tasks may require up to 64 bits (264 levels) of precision. 
Additionally, solving PDEs normally involves working with very 
large matrices that are neither practical nor efficient to fit in a 
single memristor crossbar. Recent theoretical33 and experimental 
studies34 have used memristor (including phase-change memory) 
arrays to generate an initial, low-precision guess (seed), and rely 
on an integrated high-precision digital solver to produce the 
required high-precision solutions from the seed solution. Such 
types of accelerators are certainly beneficial, as they reduce the 
number of iterations required by the digital solver. Determining 
whether memristor-based hardware can be used to directly 
perform high-precision computing tasks, however, will enable 
a better understanding of how broadly memristive hardware 
can be applied. Such knowledge will help pave the way to build 
more general memristor-based computing platforms, instead of  
special-purpose accelerators.
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In this Article, we present a memristor-based in-memory com-
puting system, including a complete hardware and software package, 
that can effectively address the concerns of limited device precision 
and crossbar size. We experimentally solve static and time-evolving 
problems using the memristor crossbar-based hardware system, 
with results comparable to those obtained from digital solvers. We 
further verify the system’s performance in a real-world task, where 
the memristor-based PDE solver is used as part of the workflow in 
a comprehensive plasma-hydrodynamics simulator package for the 
type of plasma systems used for plasma etching. We achieved reli-
able results comparable to conventional digital PDE solvers, with 
improvements in power efficiency and throughput.

High-precision memristor computing system
A system of PDEs describes the relationship between multiple 
variables and their partial derivatives. Typically, a system of PDE 
is solved numerically by discretizing space (and/or time) into grid 
points such that the partial derivatives at one point can be reduced 
into combinations of the variable values at several neighbouring 
grid points. Afterwards, the problem is mapped to matrix form, 
with the numerical coefficients representing linearized operators 
between variables at neighbouring grid points. The resulting coef-
ficient matrix can be very large but is typically sparse. This process 
is performed during the initial problem formulation stage, using 
techniques such as finite-difference, finite-element or finite-volume 
methods (see Methods). Iterative methods are then used to estimate 
the variable values at the grid points through the coefficient matrix 
and the system’s boundary conditions (Fig. 1a). These operations 
can be performed through a series of vector–matrix operations that 
we aim to compute in memristor crossbars.

For practical systems, the coefficient matrix can be very large: 
for example, a 2D system with a 100 ×  100 grid will result in a 
coefficient matrix with (104)2 =  108 elements. However, the coef-
ficient matrix is also typically sparse, with only a very small frac-
tion of non-zero elements, as shown in Fig. 1b (see examples in 
Methods). This makes it difficult and inefficient to map the coef-
ficient matrix into a single memristor array. By taking advantage 
of the sparsity, we can divide the matrix into equally sized slices 
and map only the active slices (the ones containing non-zero ele-
ments) into memristor crossbars, as shown in Fig. 1c. By doing so, 
practical crossbar sizes, for example 16 ×  16 or 32 ×  32, can be used 
to map the active slices, while greatly improving the hardware uti-
lization. Because during vector–matrix operations all devices are 
selected, device nonlinearity will not play an important role for 
such small crossbar arrays17. Using smaller crossbar arrays also 
minimizes parasitic effects due to series resistance, sneak currents 
and imperfect virtual grounds23,35, thus making it feasible to build 

practical hardware systems using passive crossbar arrays—that is, 
without selectors.

We also show that the low native precision of memristor 
devices can be extended through the use of multiple crossbars, 
where each crossbar represents a given number of bits (Fig. 1d). 
This precision expansion approach is similar to the techniques 
used in digital circuits, where binary (two-level) physical values, 
such as capacitor voltages in a dynamic random-access memory, 
are used as the basis of high-precision computing systems. Similar 
approaches have also been proposed to improve the effective pre-
cision (for example, effective bitwidth of the weights) in memris-
tor-based neural networks24–28. Assuming that a memristor can 
natively support a number l of resistance levels, the goal is thus to 
perform high-precision arithmetic operations using base-l num-
bers, analogous to the use of base-2 numbers in digital circuits. At 
the single crossbar level, analogue vector–matrix multiplications 
are performed directly between an input vector, represented by 
the voltage pulses applied to the rows, and the coefficient matrix 
elements, represented by the memristor conductance values, as 
shown in Fig. 1e. By summing results from the partial products 
from these base-l operations, the desired output for the extended 
precision can then be obtained (see Methods).

We experimentally implemented the proposed approach in a 
complete hardware and software package, as shown in Fig. 2a. The 
hardware is based on a Ta2O5−x memristor crossbar array, which is 
wire-bonded and integrated onto a printed circuit board (PCB) to 
carry out the coefficient matrix storage and vector–matrix multi-
plication tasks, shown in Fig. 2b. The software, based on Python, 
performs system-level operations including matrix slicing, mapping 
the problem to the hardware using the precision-extension task and 
controlling the iterative processes (see Methods and Supplementary 
Fig. 1). The software also provides an interface between the hard-
ware and the end user for data input/output (see Supplementary  
Fig. 2 for the program interface).

A scanning electron microscopy (SEM) image of the as-fab-
ricated memristor crossbar is shown in Fig. 2c. For reliable array 
operation, the initial forming voltage Vform required to establish 
switching behaviour should be low, as a high Vform can lead to high 
voltage drop on devices sharing the same electrode, even under 
common protective voltage schemes (that is, for the V/3 scheme, the 
voltage on these half-selected devices is about (1/3)Vform)36, leading 
to damage of already-formed devices in the same array. The Ta2O5–x- 
based memristor devices using a thin (3.5 nm) Ta2O5−x switching 
layer offer low forming voltage (1.25 V) and stable switching char-
acteristics, as shown in Fig. 2d. The forming, set and reset voltages 
measured from multiple (26) devices are shown in Fig. 2e, obtained 
using a pulse programming method through the test board. The 
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Fig. 1 | High-precision PDe solver based on memristor crossbar. a, An example of a time-evolving system showing a water wave inside a pool at four 
different time instances. b, An example sparse coefficient matrix used in numerically solving PDEs. c, The coefficient matrix is sliced into equal-sized 
patches, and numerical calculations are performed only for the active (non-zero) slices. d, Each high-precision (m-bit) active slice is mapped into multiple 
arrays, each representing a portion (n-bit) of the desired precision. e, The values of the elements in the n-bit slice are mapped as conductance values in 
a memristor crossbar of the same size, and vector–matrix multiplication operations of the slice are performed by supplying the input vector as voltage 
pulses to the rows and reading out the current outputs at the columns.
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forming voltage Vform is less than 3Vset, ensuring that high volt-
age will not be applied to the half-selected devices. Moreover, the 
devices show narrow distributions (σ <  0.1 V) for forming, set and 
reset voltages, making these devices well suited for passive crossbar 
array operations.

However, the inherent stochastic ion migration processes in the 
set and reset stages lead to sizable device variability37,38, as shown in 
Fig. 2f. Without any feedback mechanism during programming, a 
cell-to-cell variation of 5.3% may occur, limiting the native preci-
sion of a single device to four bits. Lower device variability can be 
obtained by using a write–verify feedback method39,40 (see Methods 
and Supplementary Fig. 3), as shown in Fig. 2g, leading to a cell-
to-cell variation of < 1%. Combined with the precision-extension 
technique discussed above, this device system is successfully used 
to experimentally demonstrate the proposed high-precision PDE 
solver system.

Poisson’s equation example
The first test using the memristor-based system was static prob-
lems. This class of equations describes spatial relationships between 
the variables at a steady-state condition. Examples include ellip-
tic PDE systems such as Laplace’s + =u u( 0)xx yy  and Poisson’s 

+ =u u f x y( ( , ))xx yy  equations41. Typically, elliptic and other sys-
tems of PDEs can be numerically formulated as solving an ⋅ =A X B 
problem, where X is the unknown vector to be solved, A is the 
coefficient matrix, and B is a constant vector containing the bound-
ary conditions. While such problems can be solved using several 
numerical techniques, here we adopted the Jacobi method42 as it 
can be directly mapped to the memristor crossbar hardware system 
using entirely iterative vector–matrix operations (see Methods).

Specifically, at iteration k, a new estimate of the unknown vector 
X is computed for the next iteration k +  1 as:

= − ⋅+ RX C X (1)k k( 1) ( )

where R is a modified coefficient matrix with the diagonal elements 
removed, and C is a constant vector that includes the boundary val-
ues. Equation (1) can be implemented in a crossbar array by map-
ping R and C to the crossbar with numerical values represented by 
the memristor device conductances, as shown in Fig. 3a. By applying 
X(k) to the input rows of this crossbar as voltage pulses, the output 
currents collected at the columns represent the new estimated value 
of X(k+1). The process is then repeated iteratively by feeding X(k+1) to 
the system as the next input until the desired accuracy is achieved.

Based on this approach, we experimentally solved a Poisson’s 
equation test case at 16-bit precision using our hardware set-up. The 
problem is defined as:

∂
∂

+ ∂
∂

= −u
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x y2sin( )cos( ) (2)
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The expected solution of the problem is shown in Fig. 3b, along 
with the boundary conditions shown in Fig. 3c. Equation (2) is 
then converted to the matrix form using a five-point numerical 
stencil, through the finite-difference method (see Methods). Here 
we used a uniform grid, which typically results in a symmetric 
matrix with the non-zero elements along the penta-diagonal 
directions. In this example, only four elements along any row are 
non-zero after removal of the diagonal elements following the 
Jacobi method. Specifically, when dividing the matrix into 3 ×  3 
slices (if the number of grid points is a multiple of 3), only four 
different patterns are needed. We thus divided the coefficient 
matrix into 3 ×  3 slices and wrote the four patterns into a 16 ×  3 
array (Supplementary Fig. 4). Time multiplexing is then used to 
obtain the vector–matrix products from the crossbar output for 
different slices sharing the same pattern. The different partial 
products are then summed through the board to obtain the final 
output. Time multiplexing is not required in general, as parallel 
processing of the slices can be obtained if a larger crossbar hard-
ware system can be built.

Using the proposed precision-extension approach any target 
precision can potentially be achieved in the hardware system. Here, 
16-bit precision is needed for the input and output vectors to achieve 
convergence and correct solutions. With the proposed approach, 
the Poisson’s equation was iteratively solved using the memristor-
based system at 16-bit precision. We used a simple coarse-to-fine 
grid approach to improve the numerical convergence speed, where 
we started with a 3 ×  3 grid and ended with a 30 ×  30 grid (over 
the same area) after ten system iterations. After each iteration, the 
solution is updated and the grid size is increased, where the coarse 
grid solution acts as an initial approximation for the next finer grid. 
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Fig. 2 | Hardware set-up and device measurement. a, A photograph 
of the memristor-based PDE solver system in operation, showing the 
hardware set-up controlled by a software package. b, A photograph of the 
test board with the memristor crossbar chip mounted on it. c, SEM image 
of the as-fabricated 16 ×  3 crossbar array. Inset: device structure with a 
thin Ta2O5−x resistive switching film sandwiched by a Ta top electrode 
and a Pd bottom electrode. Scale bar, 25 μ m. d, Current–voltage (d.c.) 
measurements showing the original forming process and 10 subsequent 
set/reset processes. A low forming voltage and reliable resistive switching 
can be obtained. e, Pulse measurement results from multiple devices 
(26 cells), showing narrow distributions (σ <  0.1 V) for forming, set and 
reset voltages. f, Variation of device conductance obtained from pre-
determined programming conditions without any feedback mechanism. A 
5.3% conductance variation is achieved. g, With the write–verify approach 
(see Methods), the conductance variation is reduced to 0.85%, making it 
possible to implement the PDE solver in memristor-based hardware.
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These grids generate coefficient matrices of sizes ranging from 81 
elements to 8.1 ×  105 elements, while the number of active non-zero 
slices ranges from 7 to 1.42 ×  103.

The output of the memristor crossbar system for the final 
30 ×  30 grid points is shown in Fig. 3d. The measured output was 
compared with the exact solution obtained using the inverse matrix 
technique for the same equation, and the mean absolute error 
(MAE) was measured and plotted against the iteration number, as 
shown in Fig. 3e. For comparison, results obtained from a standard 
floating-point solver are also plotted. The results show that both 
solutions converge at roughly the same rate with similar error fig-
ures. Ten iterations were enough for the hardware system to achieve 
an MAE below 2.7% compared with the exact solutions. Figure 3f 
shows three-dimensional (3D) reconstructions of the experimen-
tally obtained solution from the memristor-based solver, at differ-
ent iteration numbers. The solution after 10 iterations shows an 
excellent match with the expected solution. The small differences 
in the results obtained from the memristor-based solver and the 
floating-point solver in Fig. 3e are due to the device variability in 
the hardware system, as the precision-extension technique was 
only applied to the input vectors in this experiment. By applying 
the precision-extension technique to also minimize the device vari-
ation effects, a precise match between the memristor-based solver 
and the floating-point solver can be obtained (see Methods and 
Supplementary Figs. 5 and 6).

time-evolving problem example
The second set of PDEs that we tested using the memristor-based 
hardware system are time-evolving problems. In this case, the 
PDE includes partial derivatives with respect to time along with 
other variables. Typically, numerical methods such as finite dif-
ference are used to map the equation to the matrix form42, and 
the new state of the system is computed in an iterative manner. At 
the hardware level, this process is again reduced into a series of 
vector–matrix operations, where the output of the crossbar array 
at one time frame is used as the input for the next iteration, as 
shown in Fig. 4a.

As an example, we experimentally solved a 2D wave equation 
using the memristor-based set-up. The equation is:
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∂
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where u is the wave amplitude, θ is the wave speed constant and ζ is a 
decay (damping) constant. This equation represents a classical physics 
description of the propagation of 2D waves, and can be used to visual-
ize a shallow water surface in a computationally inexpensive manner43.

We solved the wave equation in a 60 ×  60 grid, with a wave 
speed constant of .0 37 , a decay constant of 2.5 ×  10−2, spatial 
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memristor crossbar-based system. A single crossbar is shown for illustration purpose. The solution is iteratively computed by applying the vector X(k) as 
voltage pulses to the rows of the crossbar and collecting the output currents at the columns which represent the numerical value of X(k+1). b, Poisson’s 
equation used as a test example, and a 3D plot of the intended solution. c, The boundary conditions used in the example, measured at the four edges of the 
system. d, Final measured output from the memristor-based PDE solver hardware, for the 900 grid points in the 30 ×  30 mesh. e, Evolution of the mean 
absolute error for the memristor-based (hardware (HW)) solver and a floating-point (FP) solver, measured against the exact numerical solution. A coarse-
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steps = = .h h 0 1x y  and time step Δ = .t 0 1. Using the finite-difference 
method, equation (3) is re-written as:

α α α= + + ⋅+ − AU U U U( ) (4)k k k k( 1)
1

( )
2

( 1)
3

( )

where U is the targeted solution vector, k is the iteration number, α1, 
α2, α3 are constants based on θ, ζ, hx, hy and Δ t, and A is the coef-
ficients matrix (see Methods). Using a five-point stencil to gener-
ate the coefficient matrix, the matrix A contains 1.3 ×  107 elements, 
but less than 0.14% of the elements are non-zero. After removing 
the diagonal elements, the sparse coefficient matrix is divided into 
3 ×  3 patches with a total of 5,840 active slices using the software 
package. These slices follow four different patterns which are then 
mapped directly to four 3 ×  3 crossbars in the 16 ×  3 crossbar (see 
Supplementary Fig. 4). Similar to the static problem example, time-
multiplexing was used to perform vector-matrix operations on the 
3 ×  3 crossbars for slices sharing the same pattern.

As an initial condition, we set U (1)  to be a Gaussian shape repre-
senting a droplet touching the water surface. The water droplet initi-
ates the 2D wave, and iterative operations were performed through the 
memristor-based system to solve the evolution of the water wave. The 
input and output vectors are encoded as 16-bit numbers. Precision-
extension techniques were applied to both the input vectors and the 
devices to reduce error propagation in the time-evolving iterations 
(see Methods and Supplementary Fig. 6). We ran the process for 70 
successive iterations to solve the wave propagation through the water 
pool and its reflection from the pool edges. The initial input vector 
to the system at k =  1 and the measured outputs at k =  10 and 70 are 
shown in Fig. 4b. The 3D reconstructions of the solution from the 
experimentally measured output of the memristor-based hardware 
system are in Fig. 4c, showing a snapshot of the wave propagation at 
different times, and verify the system’s ability to solve this time-evolv-
ing problem. More examples of the solutions (Supplementary Fig. 7 
and Supplementary Video) are in the online Supplementary Materials.

Plasma reactor simulation
Finally, we tested the approach by inserting the memristor-based 
PDE solver into the workflow of a plasma-hydrodynamics sim-
ulator. The specific problems involved simulation of a plasma 
sustained in argon gas of the type commonly used in the semi-
conductor industry for etching and deposition. A schematic of 
an inductively coupled plasma (ICP) reactor system is shown in 
Fig. 5a (see Supplementary Note 1). Numerical PDE solvers pro-
vide the core functions of industry-standard simulators for such 
systems, such as the hybrid plasma equipment model (HPEM)44 
(see Methods). In this particular implementation, the simulation 
goes through a hierarchy of outer loops that provide densities 
of charged particles, charges on surfaces and voltage boundary 
conditions on metal surfaces. These parameters are produced by 
solving a set of fluid-dynamics-like equations. At the innermost 
loop of the simulator is the solution of Poisson’s equation for the 
electric potential at the future time t +  Δ t. The particular imple-
mentation of Poisson’s equation is semi-implicit where charge 
densities at time t are augmented by predictions of charge den-
sities at t +  Δ t. The solution for the electric potential (and elec-
tric field) is then used to update the fluid dynamics equations to 
obtain new charged particle distributions, and the process is then 
repeated for each time step. Here, we directly replaced the stan-
dard floating-point solver used within the HPEM package to solve 
the Poison’s equation (the DSLUCS subroutine45; see Methods) 
with our memristor solver module, as shown in Fig. 5b. Care was 
taken to make the process fully transparent to the user. The entire 
structure of the HPEM package remained the same, with the only 
change being which subroutine is called to solve the system of 
PDEs—the call to DSLUCS or the call to the interface to the mem-
ristor-based solver.

The ICP system was simulated using a 94 ×  52 grid mesh and a 
coefficient matrix having 2.4 ×  107 elements. Within the inner loop, 
Poisson’s equation for electric potential is formulated as an ⋅ =A X B 
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Fig. 4 | experimental demonstration of solving a damped 2D wave equation. a, A general approach to solve time-evolving problems using memristor 
crossbar arrays. The output currents represent a new estimate for the next time step. b, The initial condition (at k =  1) and the measured outputs of the 
10th and 70th iterations for a damped wave equation PDE test case (inset). The test problem is iteratively solved in a 60 ×  60 grid. c, Reconstructions in 
3D of the initial condition, showing a droplet touching the water surface with a Gaussian-shaped surface profile, and the measured outputs at iteration 
numbers 35 and 70, where the z-axis represents the water surface level.
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problem. As such, a similar approach to the static problem example 
was used. Note although the mesh in the HPEM is structured, the 
crossbar method is also applicable to unstructured meshes using 
finite-element42 or finite-volume methods46. The structure of the 
mesh and method of discretization of the PDEs may change the for-
mat of the A matrix but does not impact the solver’s operation. To 
make certain that the crossbar approach is general enough to address 
all such possibilities, we divided the matrix into 32 ×  32-sized slices 
assuming no common patterns in the coefficient matrix (see exam-
ples of an unstructured coefficient matrix in Supplementary Fig. 8). 
Each slice was then treated independently to perform local vector–
matrix operations. A 64-bit precision was implemented in the mem-
ristor solver subroutine, by mapping every active slice to multiple 
memristor crossbars through the precision-extension technique. 
After solving the Poisson’s equation at each time step, the solutions 
were provided to the HPEM package, the coefficient matrix updated, 
and the processed was repeated. This process was performed in an 
automated manner, with the memristor solver fully integrated into 
the HPEM package as a standard subroutine.

Owing to the large matrix size required to address the plasma 
transport, the problem was solved through simulation using a 
device model that represents actual device parameters, unlike the 
previous two examples which were solved experimentally using 
physical memristor crossbars. The device simulator incorporates 
matrix slicing and precision-extension techniques, while accounting 
for device non-idealities and other circuit details. The simulation 
results obtained from HPEM using the crossbar-based simulator for 
solutions of Poisson’s equation are shown in Fig. 5c. The time evolu-
tion of the plasma potential inside the ICP reactor from the cross-
bar simulator are compared to the results of an otherwise identical 
calculation using the standard floating-point solver based on the 
DSLUCS subroutine, also shown in Fig. 5c. The memristor-based 
solver produces results match well with those obtained using the 
double-precision (64-bit) floating-point DSLUCS solver.

Results obtained using the memristor-based subroutine, show-
ing the time evolution of the plasma potential and the electron 
density during the initial 3 μ s of the plasma ignition, are plotted 

in Fig. 5c–g. The simulation clearly captured the initial quick rise 
of the plasma potential and the stabilization to a quasi-steady state 
after 1 μ s (Fig. 5c). The oscillation in the plasma potential with a 
period of 0.1 μ s results from the application of the 10 MHz RF bias 
on the substrate. Snapshots of the plasma potential and the electron 
density during the initial ignition (t =  0.5 μ s) and after the plasma 
stabilization (t =  3 μ s) are shown in Fig. 5d–g. These snapshots 
reveal the evolution of the plasma potential and the electron den-
sity. Specifically, the electron density has a steady-state distribution 
that is maximum at approximately half-radius towards the top of the 
chamber, as a result of the boundary conditions and polarization of 
the electric field produced by the antenna. It is in this region that 
the inductively coupled electric field from the antenna is maximum, 
producing a torus-shaped region of power deposition. Results from 
HPEM, such as those shown in Fig. 5 that reveal the electron den-
sity distribution and plasma potential, have been extensively used 
by the semiconductor industry to optimize plasma tool design and 
help develop critical etching and deposition processes. The ability of 
the memristor-based system to produce accurate simulation results 
confirm the potential of the proposed system to mitigate device-
level limitations and provide efficient numerical computing hard-
ware systems for complex real-world applications.

Conclusions
We have demonstrated that memristor-based in-memory com-
puting systems can be used to process tasks requiring high 
precision and accurate solutions, beyond what has been demon-
strated for soft computing tasks in which high device variability 
may be tolerated. Despite the limited native precision offered 
by the devices, architecture-level optimizations such as the pre-
cision-extension techniques proposed here can effectively lead 
to computations achieving 64-bit accuracy. We experimentally 
demonstrated a high-precision memristor crossbar-based PDE 
solver. Using a tantalum oxide memristor crossbar, we solved 
elliptic and hyperbolic PDE equations representing static and 
time-evolving systems, for the widely used Poisson’s equation 
and a classical water wave propagation problem, respectively. We  
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further incorporated the crossbar-based PDE solver in a large-
scale simulation package, HPEM, and used the package to simulate 
a real-world system: plasma evolution in an ICP reactor with accu-
racies matching those obtained from floating-pointing solvers.

Our studies showed that challenges including device variabil-
ity, limited equivalent precision and limited on/off ratio can be 
successfully addressed even for high-precision computing tasks. 
Additionally, the precision-extension approach used in our work 
allows the system to dynamically adjust the system precision 
as needed, and thus can efficiently allocate hardware resources 
depending on the task requirement on hand. As a result, a com-
mon hardware platform may be used to process different tasks, 
including both soft computing and hard computing problems. We 
believe that such demonstrations, showing that memristor cross-
bars can be used to directly solve high-precision computing tasks 
(instead of playing a supporting role to a digital system), broaden 
the appeal of memristor-based hardware systems and pave the way 
for the development of more general-purpose, memristor-based 
computing systems17.

We anticipate a fully integrated computing system based on 
arrays of memristor crossbars monolithically integrated on com-
plementary metal-oxide-semiconductor supporting circuitry26 
(Supplementary Notes 1 and Supplementary Fig. 9) can offer a 
scalable computing system with very high processing speeds and 
power efficiency, owing to its ability to natively compute informa-
tion in-memory and to its high level of parallelism. Our analysis, 
after accounting for the power consumption in the crossbar and 
peripheral circuitry, shows that the proposed memristor-based in-
memory computing system can considerably outperform existing 
and emerging approaches including application-specific integrated 
circuits (Supplementary Notes 2 and Supplementary Fig. 10), and 
suggest the proposed memristor-based computing hardware system 
is well positioned for soft as well as hard data-intensive computing 
tasks now and in the future.

Methods
Partial differential equation. A PDE is any equation with a function of multiple 
variables and their partial derivatives. Let u be a function with independent 
variables …t x x, , , n1 , defined as:

= …u u t x x x( , , , , ) (5)n1 2

A general PDE of u has the form:
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The order of equation (6) is determined by the order of the highest partial 
derivative appearing in the equation.

Software package CPHS. A Python-based software package provides system-
level functions to the hardware solver and controls the hardware operation. The 
program, Crossbar PDE Hardware Solver (CPHS), performs high-level operations 
such as coefficient matrix slicing and precision-extension. These system-level 
operations transform the process of solving a PDE problem into a set of matrix 
operations that are in turn computed in the memristor crossbar hardware. 
Specifically, CPHS provides control signals to the system’s PCB to manage modules 
such as analogue-to-digital converters (ADCs), digital-to-analogue converters 
(DACs) and multiplexers to send signals to and collect data from the memristor 
crossbar. The results (typically partial products) collected from the hardware set-
up are then used to reconstruct the final output of the system. A graphical user 
interface for CPHS was developed to ease the design and analysis processes (see 
Supplementary Fig. 1 and 2).

CPHS also supports modules based on exact and iterative floating-point 
methods, as well as simulations using realistic memristor device models for 
comparison and analysis of the system performance. CPHS enables users to readily 
update device parameters such as the crossbar size and the number of bits per 
device, as well as other parameters in the circuitry.

Memristor array fabrication and characterization. A Ta2O5–x-based memristor 
crossbar array was used to implement the PDE solver in hardware. Starting 

from a SiO2/Si substrate, the bottom electrode (Pd, 50 nm thick) was patterned 
by photolithography, electron-beam evaporation and lift-off processes. The 
3.5-nm-thick Ta2O5–x switching layer was deposited by RF sputtering, using low 
power (30 W) and a slow deposition rate (about 1.1 Å min−1). The top Ta (40 nm) 
electrode was deposited by photolithography and d.c. sputtering (100 W), followed 
by electron-beam evaporation of a passivation layer (Pd 25 nm +  Au 75 nm) and 
lift-off processes. Finally, a reactive ion etching process (SF6/Ar) was performed 
to expose the bottom contacts. Characterization of the Ta2O5–x-based memristors 
was performed using either a Keithley semiconductor parameter analyser tool (for 
stand-alone cells), or a custom-built system including a test board (for crossbar 
array measurements and PDE solver implementation).

Test board system. A custom-built PCB test board was developed to measure the 
memristor crossbar array and implement the PDE solver along with the software 
package CPHS. The board can send and retrieve signals from up to 32 rows and 
32 columns. Pulse signals needed for set/reset and read operations are generated 
from four independent DACs, two of which (DAC0 and DAC1) are used for rows 
and two (DAC2, DAC3) for columns. The signals are delivered to the selected rows 
or columns through switching matrices on the board. During read (computing) 
operation, the output node (typically a column) is connected to a sensing circuit 
and the output current is converted to a voltage signal and processed by an ADC. 
The board is controlled by a mixed code based on Python and C.

Write–verify technique. To reduce the memristor device variability, we used a 
write–verify technique to write and update the coefficient values in the crossbar. 
Specifically, each write operation is based on a sequence of write–read pulse pairs, 
each pair including a programming (set or reset) pulse and a subsequent read 
pulse (0.3 V, 100 μ s) for verification purpose. By comparing the read current with 
a target value of the cell, the programming pulse in the next pair in the sequence is 
determined: that is, set (reset) for conductance increase (decrease). Each set (reset) 
pulse has a fixed duration (1 μ s) but gradually increasing voltage levels to achieve 
the desired conductance value (0.75 V to 0.9 V for set, − 0.85 V to − 1.05 V for reset). 
When the conductance reaches within a pre-determined range of the target value 
(for example 1%), the write operation is considered complete. Supplementary Fig. 3 
shows a flow chart for the write–verify process. In the experimental implementation, 
the initial write sequence (with the device in the high-resistance state) typically 
requires 100 write–verify pairs on average, while updating the coefficients later on 
typically requires around 10 write–verify pairs in a write sequence.

Precision-extension technique. Precision extension is a system-level technique 
we proposed to improve the effective precision of memristor-based hardware. 
In this case, a high precision can be provided through multiple devices together, 
each of which stores a portion of the required bitwidth. The same technique is 
also used to implement the required precision of the input and output analogue 
data to and from the crossbar array, by representing a high-precision data using 
multiple splits.

The approach here is to treat the data in a base-l number system, where l is the 
number of levels represented by a single digit. For example, operations of 12-bit 
numbers can be processed in a physical system based on six-bit devices: thus, 
12-bit vectors X and Y can be represented as:
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where X X Y Y, , ,1 0 1 0 are six-bit vectors. A dot product between the two vectors is 
performed as:

⋅ = ⋅ + ⋅ + ⋅ + ⋅l l lX Y X Y X Y X Y X Y( ) ( ) ( ) ( ) (9)0 0 0 1 1 0
2

1 1

where l and l2denote single and double digit shifts. Each partial dot product is 
computed as at the (native) single digit level:

⋅ = + +a d b e c fX Y (10)i j i j i j i j

Equation (10) can be directly executed in a memristor crossbar by encoding 
a b c{ , , }i i i  as the input voltages applied to different rows and d e f{ , , }j j j

 as the 
memristors’ conductance values along a column. The results of the partial products 
are summed together according to equation (9) to obtain the full dot product 
result. Other arithmetic operations with the extended precision can be performed 
similarly by splitting the high-precision operations into partial operations. Similar 
techniques to improve the precision of memristor-based hardware systems have 
been proposed for neural network type of applications24–28.
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To properly implement the precision-extension technique, the partial products 
need to be quantized before the digit shift operations, otherwise noise (error) in 
the analogue output due to device variation becomes amplified during the digit 
shift and reduces the precision of the final output. Fortunately, the quantization 
operation can be readily implemented in the existing circuitry through the ADC 
circuitry that is already used in the hardware to quantize analogue outputs to 
digital values. In a typical ADC operation, any analogue value within quantization 
thresholds is represented by the same quantized value, thus preventing the noise 
in the analogue signal from being amplified during the shift operation (see 
Supplementary Fig. 6), and enable the shift operations to perform properly.

Specifically, the required number of ADC bits is determined by the sum of the 
input bits, the stored coefficient (weight) bits, and the number of non-zero inputs 
per column, as defined in24:

ω= + +b b b log (11)ADC i d 2

where bi is the number of bits of the input, bd is the equivalent number of bits 
of each memristor device, and ω is the number of non-zero inputs per column, 
although this bitwidth requirement may be reduced slightly through architecture 
optimizations24. By designing ADCs with the right number of bits based on 
equation (11) (instead of pursuing as many bits as possible), the ADC area 
and power consumption overhead can be minimized while also providing the 
desirable quantization effect to minimize error propagation during the shift 
operations. Indeed, our simulations and experiments verify that combining the 
ADC quantization effect with the precision-extension technique can reliably 
lead to high-precision operation (for example, 64 bits) of the memristor-based 
hardware, even though the native device precision is much lower, for example 
4-bit. Additionally, a normalization (scaling) step can be introduced to improve the 
dynamic range of the fixed-point solver. In this approach, a global exponent field is 
used for all values, and the radix point location for all elements in the input vector 
can be shifted together to improve the dynamic range if needed. The normalization 
can be performed at either the initialization stage or during iterations, depending 
on the precision requirement of the problem.

Finite-difference method. The finite-difference method (FDM) is a numerical 
technique to solve partial (or ordinary) differential equations by discretizing the 
partial derivatives using difference equations. Given a set of regularly distributed 
grid points of fixed separation, the FDM approximates the partial derivatives at each 
point using its neighbouring values based on Taylor’s theorem42. For instance, a first 
derivative can be approximated in a 1D system using the nearest neighbour points as:

≈
−+u
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d
(13)i i 1

 ≈
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d 2
(14)i i1 1

where h is the spacing between two grid points, i is the index of the desired grid 
point, and i −  1 and i +  1 are the indices of the neighbouring points. The forward, 
backward and central approximations depend on the direction equation used. 
Higher-accuracy approximations can be achieved by using more neighbouring 
points. The technique is not limited to fixed mesh spacing, although we use fixed 
meshing spacing here for simplicity.

In this study, we used a central approximation to represent the second-order 
derivatives of the elliptic and hyperbolic PDEs that are mapped to the hardware 
system. For example, a second-order partial derivative with respect to variable x for 
a 2D system in Cartesian coordinates is:

∂
∂

≈
− ++ −u

x

u u u

h

2
(15)i j i j i j

2

2
1, , 1,

2

where i is the x-axis grid index, j is the y-axis grid index and h is the distance 
between two neighbouring grid points along the x- or y-axis. Hence, partial 
derivatives at a point can be expressed by values at its neighbouring points. The 
pre-factors (coefficients) in the expressions are summarized as coefficient tables for 
a given order and accuracy during the discretization process.

For instance, the gradient relation in a 2D space can be described using central 
difference as:
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where h is the distance between two neighbouring grid points along the x-axis 
or the y-axis. Here, each point is related to its four neighbouring points using 
coefficients of 1,1,–4,1,1. Such relations can be graphically represented using 
stencils, where the size of a stencil is defined by the number of points each point is 
related to (see Supplementary Fig. 11). Hence, equation (16) is described using a 
five-point stencil.

Finally, the discretized equation is mapped into a coefficient matrix, where 
each row in the coefficient matrix describes the relation between a point and the 
other points in the grid. The dimension of the (square) coefficient matrix, that is, 
the number of elements per row, is equal to the total number of grid points in the 
mesh and can thus be very large. However, the number of non-zero elements per 
row equals the stencil size (for non-edge grid points), resulting in highly sparse 
coefficient matrices.

Jacobi method. The Jacobi iterative method was used to solve elliptic PDE systems. 
The Jacobi method is a numerical technique used to solve diagonally dominant 
linear systems, ⋅ =A X B, where:
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The iterative solution is obtained from:
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Equation (17) can be written in a matrix form as:

= − ⋅+ −D MX B X( ) (19)k k( 1) 1 ( )

where D is a matrix with only the diagonal elements of A, and M contains the 
remaining elements of A. In the case where the diagonal elements are equal, which 
is common, equation (19) is simplified as:

= − ⋅+

d
MX B X1 ( ) (20)k k( 1) ( )

where d is the common diagonal element.
We note that any scientific or engineering system that includes transport 

phenomena or reaction chemistry (such as fluid dynamics or radiation transport) that 
is modelled for chemical engineering, combustion, fluid mechanics, solid state physics 
and nuclear engineering, in addition to plasma physics, is of a diagonally dominant 
matrix. Thus, the vast majority of the PDE problems are diagonally dominant and 
can be solved by the proposed method in this work. It should be noted, however, that 
diagonally dominant coefficient matrices do not have to be structured. As shown in 
Supplementary Fig. 8a,b, an unstructured matrix can be divided into slices that are 
diagonally dominant and mapped into the crossbar system.

Poisson’s equation mapping. The Poisson’s equation described in equation (2) is 
mapped to the crossbar hardware system by first approximating it using central 
FDM and a common 2D five-point stencil as

+ − + +
= −+ + − −u u u u u

h
x y

4
2 sin( )cos( ) (21)i j i j i j i j i j

i i
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2

where i is the x-axis grid index, j is the y-axis grid index and h is the distance 
between two neighbouring grid points along the x-axis or y-axis. In an example 
where the problem’s domain is discretized into a 3 ×  3 grid (excluding boundary 
points), equation (21) is transformed into a matrix form as:
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where =f x y x y( , ) sin( )cos( )i j i i , and bi j, are the boundary values of the system.
Similar matrices can be obtained for larger grids. It should be noted that the 

sparsity of the coefficient matrix is a function of the mesh size, with larger meshes 
leading to more sparse matrices, since the matrix dimension is determined by the 
total number of grid points, while the number of non-zero elements equals the 
fixed (small) stencil size. A typical stencil size is 5 for second-order 2D PDEs, while 
the matrix dimension can be very large (for example, with 900 elements in a row 
for a small 30 ×  30 grid), leading to very sparse matrices. Equation (22) is in the 
form of ⋅ =A X B, and can be solved using the Jacobi method as:

where the constant vector C equals − B/4 in this example. Afterwards, the system is 
mapped to the memristor crossbar hardware and solved as described in the main text.

Two-dimensional wave PDE mapping. To map the 2D wave system described in 
equation (3) to the hardware set-up, we first discretized it following FDM as:
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where u represents the wave height, i is the x-axis grid index, j is the y-axis grid 
index, h is the distance between two neighbouring grid points along the x-axis or 
y-axis, t is the time index, Δ t is the numerical time step, θ is the wave speed and  
ζ is the decay (damping) constant. Here, central FDM is used for the second-order 
partial derivatives, and backward FDM is used for the first-order partial derivative. 
Equation (24) can be re-written in a five-point stencil format as:
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and mapped to a matrix form as (shown for a 3 ×  3 grid for illustration purposes):
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where the constants α ζΔ= − t21 , α ζΔ= −t 12  and α θΔ= ∕t h( )3
2. Similar to the 

Poisson’s equation case, the maximum number of non-zero elements in each row 
equals the stencil size (5), while the row length equals the total number of grid 
points. This results in highly sparse coefficient matrices.

Hybrid plasma equipment model simulator. The HPEM44 is a 2D fluid-kinetic 
hydrodynamics simulation package used for the investigation of low-pressure 
(1 mTorr to 1 Torr) and low-temperature (Te <  tens of eV) plasma processing 
reactors. The HPEM has a hierarchical structure in which different modules 

addressing different physical phenomena are sequentially executed in an iterative 
manner (see Supplementary Fig. 12). In this study, the major modules used are 
the electromagnetics module (EMM), the electron energy transport module 
(EETM) and the FKPM. The EMM solves the inductively coupled electromagnetic 
fields based on the applied azimuthal currents in the ICP coils using a frequency 
domain solution of Maxwell’s equations. The EETM solves the spatially dependent 
electron energy distributions using an electron Monte Carlo simulation, which 
then provides electron impact source functions for inelastic collisions and electron 
transport coefficients. In the FKPM, owing to the tight coupling of electrostatic 
fields to the densities of charged particles, the Poisson’s equation is solved self-
consistently with the continuity, momentum and energy equations for all heavy 
particles. An iteration in HPEM consists a complete cycle through these modules 
which sequentially receive and provide data between them. In the FKPM, given  
the charge distribution in the plasma region and the boundary conditions  
(d.c. bias and applied voltage waveform on the electrodes and charges accumulated 
on the surface of the dielectrics), the 2D Poisson’s equations are solved using two 
approaches, the DSLUCS45 and the memristor crossbar-based PDE solver, for the 
present electrostatic potentials.

Integrating the memristor PDE solver with HPEM. The HPEM uses a finite-
volume method to generate coefficient matrices for Poisson’s equation in the 
FKPM module. The matrices are then handed to the memristor PDE solver. The 
matrices are sliced into 32 ×  32 patches by the solver’s software, with all diagonal 
elements removed to prepare it for the numerical Jacobi method processes. 
Precision-extension techniques are used to implement the matrix operations at 32 
bits. Afterwards, the results are supplied to the HPEM code for the next operation. 
To represent positive and negative coefficients, two matrices, representing 
respectively the positive and negative numbers, were used, with precision extension 
applied to each of them separately.

DSLUCS subroutine. DSLUCS45 is a Fortran language subroutine used to solve 
linear ⋅ =A X B systems using the biconjugate gradient squared method with 
Incomplete LU decomposition preconditioning technique. The DSLUCS is used by 
the HPEM software as the default ⋅ =A X B numerical solver.

Mean absolute error. We calculated the error between the computed numerical 
result and the exact solution using the MAE, which is defined as:

=
∑ ∣ − ∣=

− x x

n
MAE (27)j

n
j j0

1 E N

where xE is the exact solution of the problem, xN is the numerically computed 
solution either using the memristor PDE solver or a floating-point solver, and n is 
the number of grid points.

Data availability. The data that support the plots within this paper and  
other findings of this study are available from the corresponding author upon 
reasonable request.
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