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Boltzmann’s equation(BE) for the electron-velocity distribution (EVD) in partially ionized
plasmas is not usually directly integrated as an initial value problem using finite differences.
This circumstance is a result of numerical effects which blur sharp density boundaries in the
position-velocity plane. To address this issue, we have applied fiux corrected transport (FCT)
to solving BE and demonstrated the method by calculating the EVD in the cathode fall of a He
glow discharge by direct integration. Unidirectional and bidirectional EVDs are considered,
and comparisons are made to conventional muftibeam and Monte Carlo simulations to validate
our method. We find that using FCT to solve BE is a significant improvement over
conventional finite difference methods, being both more accurate and computationally faster.

§. INTRODUCTION

Obtaining an accurate representation of the electron-
velocity distribution (EVD) in low-temperature plasmas is
of paramount importance if one is to accurately calculate
electron transport coefficients. This is particularly impor-
tant under conditions where the EVD is not in equilibrium
with the local electric field. This condition occurs if the rate
of energy or momentum relaxation v, or the distance over
which the EVD equilibrates 4 is small compared to the rate
of change of the electric field,
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These conditions are usually found in the cathode fall of
glow discharges'” and in high-frequency ( > MHz) low-
pressure discharges as used in plasma processing.*® The
typical time and distance required for the EVD to come into
equilibrium with an applied electric field is shown in Fig. 1
for electron swarms in Ar and N,. These results were ob-
tained by applying a step function in electric field to a ther-
mal (0.05 eV) electron distribution and observing the time
or distance required for the EVE to reach the steady state. In
low-pressure argon plasmas ( < a few Torr} and moderate
electric fields (= 10-100 Townsends (Td), 1 Td=10""
YV cm?) the equilibration time and distance are 10-100 ns
and 0.1-1.0 cm. Under these conditions spatial and/or tem-
poral development of the EVD must be considered.

The temporal and spatially dependent EVD is obtained
from solution of Boltzmann's equation (BE),
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where the f(v,r,1) is the electron velocity distribution. The
terms in Eq. (2) represent the change in the EVD due to
convection in coordinate space with velocity v, convection in
velocity space with acceleration 8, and changes in the EVD
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due to collisions. For electrons in an unmagnetized glow
discharge, 8 = — ¢E(r,2)}/m,, where B is the local instanta-
neous electric field and s, is the electron mass. Transport
coeflicients, such as the rate constant for electron impact
ionization of neutrals k, (r,#) (cm’/s), are obtained by con-
volving the EVD with the electron impact cross section and
velocity

k, (v, zjmf(v,r,tﬂvjd(lvj)d%. 3
O

Solving BE under nonegquilibrium conditions for analy-
sis of low-temperature partially ionized plasmas has been the
topic of many previous works.”!" For example, BE is com-
monly solved using a spherical harmonic expansion,
Jv,8y = Z,fi (v, 1) P, {cos{ @) ], where P, is the Legendre po-
lynomical and # is measured with respect to the applied elec-
tric field.” This methed may, however, require many terms
in order to correctly include the effects of anisotropic scat-
tering,® and is not easily extended to multiple spatial dimen-
sions. Beam solutions for BE are convenient in regions of
rapidly changing electric fields such as in the cathode fail of 2
glow discharge.'®"" Beam solutions are poor, however, at
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FI(. 1. Approximate times and distances required for an electron velocity
distribution to come into equilibrium with a step function in electric field for
swarms in Ar and N,. The quantities have been normalized by gas density.
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correctly treating nonforward scattering, and time-varying
electric fields are difficult to account for. A recent improve-
ment to the beam method, using a convective propagator,
alleviates many of those restrictions.'” Finally, Monte Carlo
particle simulations abandon solutions of BE in favor of di-
rectly integrating the equations of motion of individual par-
ticles, and in doing so yield an exact representation of the
EVD'),(),B

In very few cases is BE, a first-order partiai differential
equation, sclved by direct integration as a boundary value or
initial value problem using finite differences.” This condition
arises primarily because of the effects of numerical inaccura-
cies, such as numerical diffusion, which blur sharp boundar-
ies in the energy-position (¢€,x) plane. This is particularly
important with respect to computing excitation rates for
processes which have threshold energies. For example, in the
cathode {all of an electric discharge the electric potential
${x) changes rapidly as a function of distance from the cath-
ode.”**" Ignoring superelastic collisions and electrons
emitted from the cathode with significant energy, electrons
are excluded from that position of the (¢,x) plane which has
higher energies than eg{x). If low-order finite difference
techniques are used to integrate BE, such as the donor cell
method, significant numerical diffusion may result. As a
consequence, the cited sharp boundary in the (ex) is
blurred and electron density may be placed in the excluded
region [that is, in the plane to the left of e (x)]. Such a
soletion for f{v,x) will therefore predict electron impact rate
constants k(x) for processes having threshold energies at
spatial locations closer to the cathode than energetically al-
lowed. Integrating BE using higher-order differencing meth-
ods may preserve sharp boundaries in the (€,x) plane, how-
ever they may also introduce unphysicai ripples. These
ripples may lead to instabilities since the local rate of ioniza-
tion is increased by the magnitude of the ripple, which
further increases the local rate of ionization.

If the spread, or numerical diffusion, of a beam in the
electron distribution in energy space is symmetric about iis
mean value &,, then energy is conserved since the integral of
fle) in the vicinity of ¢, still yields the mean value. If a
collision cross section has a near constant value in the vicini-
ty around €, then the resulting rate constant should also be
conserved. If, however, numerical diffusion occurs in veloc-
ity space, energy conservation is not guaranteed since there
is a fractional residual in the mean energy, for a Gaussian
spread about ¥, proportional to ( Av/ V)% Therefore limit-
ing numerical diffusion, that is minimizing Av. in such cases
is important not only with respect to obtaining rate coeffi-
cients but also with respect to conserving energy.

The problem we have described of preserving sharp gra-
dients in convective transport is not unique and many inte-
gration methods have been developed to deal with it. We
may take advantage of those techniques to directly integrate
BE as an initial value problem by noting the similarity be-
tween the two divergent terms in BE. The first term,

— vV ./, is the usual convective transport term in coordi-
nate space. The second divergent term in BE, — a-V_f, can
be viewed of as convection in velocity space driven by the
acceleration. In doing so integration methods developed for
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conventional convective transport may be adapted to solve
BE. The n-dimensional, time-dependent BE is simply solved
as an initial value problem for convection in 2n dimensions;
n dimensions for coordinate space and n dimensions for ve-
locity space.

In this paper, we introduce the concept of using flux
corrected transport (FCT) for directly integrating Boltz-
mann’s equation for the EVD using finite differences. FCT is
a conservative method for integrating convective transport
equations using finite difference equations which is capable
of preserving steep gradients in the solution while eliminat-
ing the ripple associated with higher-order solutions.'®??
This is precisely the requirement that must be met to pre-
serve the boundary of exclusion in the (€,x) plane when solv-
ing BE as an initial value problem by direct integration. FCT
has previcusly been successfully used to integrate the mo-
ments of BE equation {continuity, momentum) to simulate
streamer propagation.”>® The innovation we propose is to
use FCT to directly solve BE.

In Sec. I1, we will briefly describe the basis of the FCT
algorithms and in Sec. 11T we will discuss our particular ap-
plication of FCT 1o solving BE. As a demonstration of the
method, we solved for f{v,x} in the cathode fall of a glow
discharge in He. This solution is presented in Sec. IV where
comparisons are also made to muitibeam and Monte Carlo
solutions for the same conditions to validate our method.
Concluding remarks are in Sec. V.

H. OVERVIEW OF THE FLUX CORRECTED TRANSPORT
ALGORITHMS

Flux corrected transport (FCT) is a numerical tech-
nique developed by Boris and Book'® for integrating partial
differential equations using finite differences. The FCT
method possesses the advantages of both high- and low-or-
der finite difference schemes. Like low-order schemes, FCT
does not produce the dispersive ripples that higher-order
schemes do. Like higher-order schemes, FCT does not suffer
from the low accuracy and excessive numerical diffusion
which are characteristic of low-order schemes. The key fea-
ture of FCT is the use of a corrective diffusion which is local-
ized in only those regions where nonphysical ripples tend to
form due to dispersion (i.e., in the neighborhood of steep
gradients) and smooths those ripples. The corrective diffu-
sive flux is nonlinear, as its magnitude depends on the values
of the dependent variable from point to point, and is imple-
mented in a conservative fashion. The diffusive fiux is can-
celed by an opposite antidiffusive flux where the diffusion is
clearly not needed. The operation which determines how
much of the diffusive flux is canceled is called flux correction
or flux limiting.

The algorithm for applying FCT to convective transport
will be briefly described. Consider the continuity equation

a  J
R e =0, /
gt Ox (A) ’ )

where fis a density and v is the convective velocity. A finite

difference solution to this equation is in conservative form
when it can be written as
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Ar
Ax

where f7 is the density at location x; and time ¢,. F; _,,, i§
the fiux of fat the boundary between numerical cell { and cell
i+ 1. The time step is Ar=1r,,., —1t, and
Ax, =X, — X;_ {,2, which are the boundaries of the cell.
The dependence of F {the transported fluxes) on f defines
the integration scheme. Some common examples are leap-
frog, Lax—~Wendroff, Crank-Nicholson, and donor cell. The
general sequence of the FCT algorithm is as follows!"'®:

(i} Compute F7, ;,,, the transportive flux, using a low-
order scheme (denoted by the superscript ) which is guar-
anteed to give ripple-free resuits.

(ii) Compute the updated transported and diffused!'®
low-order solution for 7, denoted by f*°, using F5,

@ pn AT
JE=7 Ax,

(iii) Compute F7_,,, the transportive flux using a
high-order scheme (denocted by the superscript H) which
will preserve the steep boundaries of interest.

{iv} Define the antidiffusive flux. This is generally per-
formed by one of two methods. The first is to take the antidif-
fusive flux to be the difference between the high- and low-
order transportive fluxes,’

Aivrvo=F \n—Flyip. (7}
The second method is to assume the form

A =Rivan U‘:‘il ~f, {8)
where pt; , ,, is an antidiffusion coefficient which is deter-
mined by performing a Fourier analysis on the full update
sequence and minimizing the amplitude and phase errors.’”
This is the method vsed in this work.

{v} Limit the antidiffusive fluzes 4, , |, in such a man-

ner such the /71 ' as compated in (vi) are free of extrema
not found in £* or f*,

f?+i=ff'l“’ (Fi»+1/2¢f?i‘1/2)s (5)

i

(Fiy1.—Ff 1 n) (6)

0<C <L (%)
{(vi} Finally, apply the limited antidiffusive fluxes,

n+ 1 . gtd ___A;E__

/i £ Ax

The critical juncture in this method is step (v), as with-
out flux limiting, /7' would simply be the time-advanced
high-order solution. Note that since steps (i) and (i) give a
low-order update, steps (iii)—(vi) can be added as an en-
hancement to an existing low-order finite difference algo-
rithm.?

The critical flux-Hmiting step described above bounds
the antidiffusive fluxes so that they do not generate new
maxima or minima in the solution, nor accentuate already
existing extrema. This step is the poorest defined in the FCT
algorithm and many methods have been proposed to select
the antidiffusive fluxes and the flux limiters. Errors can arise
in this step if the flux limiter overcorrects the antidiffusive
fluxes and leaves an vnnecessarily large net diffusion. These
errors result in clipping of peaks and filling of troughs. Boris
and Book’s'® original limiter is computationaily fast, but
tends to clip peaks. This limiter applies the criterion that the

€ —
¥ i+ 172 7 Ci+ 1,"2Ai~§ /29

Aivin—A4i_10) (10)
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antidiffusive fluzes do not generate new maxima or minima
in the transported and diffused solution. Thus, for 2 peaked
density profile, diffusion in the iow-order transport and dif-
fuse step causes the peak in /¢ to be smaller than the peak in
/7, leaving the Himiter with no information to resurrect the
original peak. After successive application of this Hmiter, a
triangle profile develops a flattop. Because the limiter as-
surmes a worst case, this is classified as being a strong flux
correction.'®

A more general flux limiter, given by Zalesak,'” sets a
maximum and a minimum density at each grid point and
limite the antidiffusive fluxes so that the updated values do
not exceed these bounds. Any physicaily motivated upper
and lower bound on /7 7 ! can be used. One prescription pro-
posed by Zalesak is to examine not only £* at location 7, and
neighboring points at locations / — 1 and i + 1, but also to
use S and its neighbors to determine the maximum and min-
imum values for /7 '. For peaked profiles, this limiter re-
members the value of the peak before it was reduced by the
transport and diffuse step, and is able to resurrect it at each
time step.

A very useful variation of the flux limiters described
above is one-sided fiux Hmiting. In this method, for example,
maxima are allowed to appear or grow while minima are
restricted as before. If mass is shifted from a mesh point to its
neighbor, the density of the latter increases while the density
of the former decreases, thereby creating a local minimum.
Therefore, preventing the formation of minima forces some
measure of control on the formation or enhancement of
maxima. Using one-sided limiters results in profiles where
only the troughs can be clipped. The choice of flux limiters
depends on the physics of the problem at hand, and on the
numerical properties of the integration scheme. For exam-
ple, an integration scheme with very diffusive transport may
work well with a permissive flux limiter, whereas a more
dispersive algorithm may reguire strong flux correction.

. APPLICATION OF FCT TO THE SOLUTION OF
BOLTZMANN'S EQUATION

In this section our application of flux corrected trans-
port to the solution of Boltzmann's equation is described. As
a demonstration of the method, we have solved the one-di-
mensional BE in the cathode fall of a glow discharge while
accounting for nonforward scattering. In doing so, we can
compare our method to conventional solutions of BE for the
same conditions as a validation procedure. The electric field
in the cathode fall scales as E(x) = 2V, /d Y (1 —x/d,),
whereV, is the cathode fall voltage, d, the fall thickness, and
x is the distance from the cathode.”'*'® For typical condi-
tions, £ /NS500-1000 Td (i Td=10""" Vcm®) in the
cathode fall. In low-pressure { « a few Torr) discharges,
these vaiues are highly nonequilibrivm, and therefore a
stringent test of the method.

A. Electron transport

We soived the one-dimensional Boltzmann’s equation
[Ea. (1)] to obtain the electron velocity distribution
Slv, .t having the following independent variables; x is the
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distance from the cathode, v, is the velocity in the x direc-
tion; and ¢ is the time. Spatial transport in one dimension was
solved using FCT as described in Sec. I, The transport in
velocity space is completely analogous to that in coordinate
space, and was solved using identical algorithms. The dual
convection was handled using a time-splitting procedure.
After performing an update in coordinate space for time-
step At, an update was performed in velocity space over the
same At to complete the transport step. The time step was
chosen to be half the Courant®® value determined from both
the spatial and velocity meshes. The time-splitting proce-
dure is not a requirement of the FCT method as fully two-
dimensicnal algorithms are available.)?**° As a test we im-
plemented both time splitting and full two-dimensional
algorithms and found no significant differences between
them for our conditions. We therefore used the time-split-
ting technique, which is simpler and computationally faster
than the fully multidimensional approach.” In solving
Boltzmann’s equation in the cathode fall, 2 nonuniform
computational mesh was used. The x,’s were placed at points
corresponding to a fixed change in potential in order to re-
solve the high field region near the cathode. The v,’s were
spaced evenly from zero velocity up to one third the maxi-
mum velocity as given by the cathode fall voltage. The re-
mainder of the v;’s were placed so that the corresponding
energy intervals were uniformly spaced.

Since the emphasis of this work is on developing meth-
ods for applying FCT to integrating BE under nonequilibri-
um conditions, three different transport algorithms were in-
vestigated. These transport algorithms are the donor cell
method (DCM), sharp and smooth transport algorithm
{SHASTA), and SHASTA low-phase error { LPE}. In dis-
cussing these aigorithms, we will only discuss the update in
coordinate space. The update in velocity space is completely
analogous to that in coordinate space.

The first algorithm uses the DCM for the low-order
transport and diffuse step,?”

W= :é;t_
&4 & F
! Ax;

where /7, refers to the velocity distribution at position x,,
velocity v;, and time-step #. The low-order transportive flux
is

(FLvm, —Fi i) (1)

for v, >0 {12a)

(12b)

L .
F1+1/2,j =fi Y
=fiy0 forv <0

The antidiffusive fluxes we used are those given by Boris and
Book™ but generalized for use on a nonuniform grid,

Ay l/2,j:ﬂi+1/2,j(f:’d-+~ L “’f:',dj)y (13}
where

Mivin; = (1/2)61'47 1/2,j(1 — €, 1/3’1‘), (14a)

£y = (WA (x| —X,). {i4b)

The flux limiter which we used is the one-sided variant of
that proposed by Zalesak.!” First, the minimum value that
J,; can be reduced to by the antidiffusive fluxes is deter-
mined,
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f,j:mln(f:fp.ffd,)’ (15&)
fﬁ'?/i'n:min(f?- I,jﬁf.ffj: ?Q—l,j)' (15b)
Next, the sum of all antidiffusive fluxes away from grid point

i is calculated,

P =max(04; ;) ~— min{0,4, 12, (16)

Then the least upper bound on the fraction which must mul-
tiply all antidiffusive fluxes away from grid point ¢ to guaran-
tee no undershoot of £, ; at grid point i is determined,

. {min(l,(fﬁ,‘b ~ [T Ax /PGy P >0 (173
1o P, =0
Then the antidiffusive fluxes are limited,
AT = A, ;/2,jR i ifA4, 2,20, (18a)
=4 1Ry K4 ;<0 (18b)
Finally, the corrected antidiffusive fluxes are applied,
71 -t At s o
f,fI:ff‘flj“"‘x‘;c“'(ffi“/z,j"Ai-z/z.j)= (19}

i

The analogous steps in velocity space are then performed,
thus completing the transport update for one time step.

The second and third methods investigated in this work
use the sharp and SHASTA and Pheonical SHASTA LPE
algorithms of Boris and Book.'® These algorithms were used
for the transport and diffuse step, and for the antidiffusive
fluxes. The expressions we used had been generalized for use
on a nonuniform mesh by Morrow and Cram.”® SHASTA
uses the following for the low-order fluxes:

Pf} o = (X 44 —xi){€i+1/2,j[(ffj “}'f?u,_;)/z}

+Ui+1/z(f?+1,j‘“’ z"fj)}’ (20)
where

Yir 1, ‘:§;+§€z2+ 12,53 (21)
and €, , ,,, ; is given by Eq. (14b). Here v can be thought of
as a diffusion coefficient and the terms in Eq. (20} having v
are the added diffusion which wili be removed by the flux
fimiter when it is not needed. The antidiffusion fluxes in the
SHASTA algorithm are the same as that for the DCM [Eq.
(13)] with ;  ,,, ; = §. The SHASTA algorithm also used
the same flux limiter as the DCM, which is given by Egs.
(15)-(18).

The Pheonical SHASTA LPE algorithm is similar to
the SHASTA method but can be more accurate under cer-
tain conditions. One of the properties that FCT algorithms
should have is that the density profile should be undisturbed
if the flow velocity is zero. The SHASTA algorithm does not
have this property, as can be seen by substituting € = 0 in the
equations above. As a result, SHASTA suffers from residual
damping in the Fourier domain at all wavelengths. One way
to obtain zero residual damping when € = (s to use a form
of the antidiffusive fluxes which exactly cancels the diffusion
in Eq. (20). The transport and diffusive step in SHASTA
LPE is identical to that for the SHASTA algorithm, except
that SHASTA LPE uses
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—1

=341, 1o (22)

The form of the antidiffusive fluxes, though, is guite differ-
ent,

Vit 12,

A, L1/2,) = Hig v, (K — X3
X[flk‘j——.lf‘:(i é(Apg.g_l,j“Api,j)]’
{23a)
p; =[xy — 2 /0%, 1S, A W E%)
=[x =2, /8 1SS =125, (238)
with
Eivn,j =31~ ‘577» V2.5 (23¢)

This is called Pheonical antidiffusion because the undamped
sclution “rises whole from the ashes” as did the Phoenix. '
The low-phase error (LPE) designation is used because v
and g have been chosen to minimize phase errors in the
Fourier domain. One can see from Eq. (23) that part of the
reason for the increased accuracy of this algorithm is that it
uses information further away from the grid point being up-
dated than the SHASTA algorithm uses. The SHASTA
LPE method uses the one-sided limiter of Boris and Book,
which is given by

Ay, =S max{0min] S(f¥ — 4 i1

(24)

where i =i — § and § =sign{(/", ; — ). This limiter is
stronger than the one-sided limiter used by Zalesak.!” That
is, it allows less of the antidiffusive fux to flow.

For each of the three algorithms, the fiux limiters were
chosen 1o be as permissive as possible without introducing
nonphysical results. This was done by performing a series of
tests using different flux limiters in which an electron beam
was propagated in the cathode fall without collisions. The
results were then compared to the analytical selution. The
optimum amount of flux limiting was found to be dependent
on the degree of diffusiveness in the transport and diffuse
step. Since the SHASTA LPE method is less diffusive and
more dispersive than the DCM and SHASTA, the Hmiter
used with it was stronger.

7+ b,j

B. Collisional processes

After the transport step was completed, the time rate of
change of the disiribution function due tc collisional pro-
cesses was calculated. The rate of change in f due to inelastic
collisional processes is

(ef). = - Sthmetr+ 3

R
x8{v,, — (v, + b 31k (25)
where o, ;

is the cross section for process « at velocity f, N is
the neutral gas density, and Av, is the change in velocity
resulting from the inelastic collision. The second term in Eq.
(25) represenis the influx of electrons from inelastic colli-
sions at higher velocities. in the case of an ionization an
additional term for the secondary electron is added.

The electron momentum transfer cross section for heli-
um used in this work was obtained from Hayashi?’ while the

U, Fon N

K

K,_,iN) + z {.fz m
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cross sections for excitation of He were obtained from Boeuf
and Marcde.! Their cross sections for excitation of the 2'S,
2’S, and 2°P levels were combined into a single process with
a threshold energy of 19.8 eV. Similarly, their cross sections
for the 2'P, 3SPD, 4SPD, and 5SPD levels were combined
into a single process with a threshold energy of 21.25 V.
The ionization cross section and the distribution of second-
ary electrons were obtained from Green and Sawada.”®
These cross sections are shown in Fig. 2

After the tota! rate of change of fat each grid point due
to collisions was calcuiated, the distribution function was
updated in time using the same Af as in the transport step. A
second-order predictor-corrector algorithm was used for the
kinetics update. This completed a full time step in the calcu-
lation. BE was integrated in time in the cited fashion, after
specifying initial and boundary conditions, until all values of
Slu,,x) on the space-velocity mesh reached the steady state.

C. Monomeodal and bimodal veiocity representations

Anisotropic scattering is an important aspect of electron
transport since it is this process which dominates momen-
tum transfer at electron energies below the inelastic thresh-
olds. In solving BE in regions of high E /N, such as in the
cathode fall of giow discharges, methods which have as-
sumed only forward scattering have been quite successful in
obtaining inelastic collision rates.’® The multibeam simuia-
tion is one such example. !> Their success is a result of the
fact that the clectrons which are responsible for excitation
and ionization are at a sufficiently high energy that their
scattering is dominantly directed forward. Even though ex-
citation processes are dominated by high-energy electrons,
other transport coefficients, such as the drift velocity, are
dominated by the more numerous low-energy secondary
electrons away from the cathode. To accurately represent
these coefficients, nonforward scatiering must be accounted
for.

Tran, Marode, and Johnson'® modeled electron trajec-
tories in the cathode fall using the Monte Carle method
while assuming only forward scattering. Boeuf and Marode!
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FIG. 2. Electron impact cross sections for helium used in this work. (See
Refs. 1, 27, and 28).

J. V. DiCario and M. J. Kushner 5767




repeated the calculation allowing fully anisotropic scatter-
ing. They found that including nonforward scattering pro-
cesses gives rise to more low-energy electrons than a one-
dimensional, forward scattering representation predicis.
Boeuf and Marode concluded, however, that the essential
features of electron behavior in the cathode fali may be deter-
mined using a one-dimensional model.

In our solution for the EVD in the cathode fall, two
methods were used. The first, called the monomodal meth-
od, considers only positive (plasina directed) velocities, and
therefore ignores nonforward scattering. The method is
analogous to, and can be directly compared to multibeam or
unidirectional Monte Carlo simulations. In order to accu-
rately model nonforward scattering and momentum trans-
fer, additional phase space dimensions are required. The sec-
ond method we used approximates this by considering both
positive and negative {cathode directed) velocity compo-
nents. This technigque, which we refer to as the bimodal
method, enables us to include momentum transfer in a one-
dimensional calculation. In the bimodal method, momen-
tum transfer collisions are represented by the mixing of * v
and ~ v velocity components so that when the rates of mo-
mentum  transfer collisions are high, we obtain
FO ) =/ v), or an isotropic EVD. A forward beamlike
velocity distribution would have f{+ 0}/ " v)> 1. Mo-
mentum transfer and velocity mixing collisions are included
in the collision integral as

(‘g{( + u)) = —0.5Nvo,, (v A Fo) —f(Fu)], (26)

where v = |* v| and &, is the momentum transfer cross
section.

IV.COMPUTED ELECTRON VELOCITY DISTRIBUTIONS
IN THE CATHODE FALL

In this section, we will present spatially dependent elec-
tron distributions obtained by directly integrating Boltz-
mann’s equation as an initial value problem using flux cor-
rected transport. As a demonstration of the method, and o
facilitate comparison of this method with other established
technigues for solving the spatially dependent BE, we have
simulated the cathode fall region of a glow discharge in He.
Comparisons are then made to multibeam and Monte Carlo
simulations, and the effectiveness of the bimodal velocity
approximation is discussed. We will also compare EVDs ob-
tained using the three different FCT algorithms described in
Sec. FIL

A. Electron distribution in the cathode fall

The electron distribution in the cathode fall of a He dis-
charge, obtained with the monomodal FCT model, is shown
in Figs. 3 and 4. The cathode is at x = 0, the cathode fall
voltage is ¥, = 150 V, and the cathode fall extends to
d, = 1.3 cm. The gas pressure is | Torr at a temperature of
273 K, and the electric field is given by
E(x) = —2V. (1 —x/d. )/d,. The electric field in the neg-
ative glow is 1 V/cm and an absorbing anode for forward
directed electrons is at d, = 1.5 cm. The EVD was obtained
by specifying an initial boundary condition for the electron
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FIG. 3. Electron velocity distribution (EVD) as a function of distance from
the electrode in the cathode fall of a glow discharge in helium. These results
were obtained by direct integration of Boltzmann’s equation using the mon-
omodal velocity approximation and FCT algorithms. The normalization of
the distribution is eV "% ¢cm " !, and the distribution is plotted using an
energy axis for clarity. The cathode fall voltage is V., = 150V, cathode fall
thickness is &, == 1.3 cm, and the gas pressure is 1 Torr. Note the develop-
ment of the beam component of the EVI and the dominance of secondary
electrons near the end of the cathode fall.

flux at the cathode and directly integrating BE in time, using
the methods described in Secs. I and I, until the distribu-
tion relaxed to its steady state. The boundary condition is
that the electron flux emitted from the cathode is uniformly
distributed between approximately 4 and 5 eV. For these
resufts the DCM with FCT enhancements were used. The
grid spacing in velocity space has points 1.5 eV apartin ener-
gy. The grid spacing in coordinate space has locations so that
the eiectric potential changes by 1.5 V between poinis.

The characteristic features of electron distributions in
the cathode 2l are obtained from this solution, as
shown in Figs. 3 and 4. The beam component of the distribu-
tion follows a trajectory in the (&,x) plane given by the elec-
tric potential. The density of clectrons in the beam decreases
across the cathode fall because of the increase in velocity (at
constant flux} and because of the depletion resulting from
collisions, When the beam energy reaches the first electronic
excitation threshold (19.6 eV ), a second group of beam elec-
trons appears with an energy about 20 eV less than the local
beam energy. These electrons have suffered one inelastic col-
tision. When the beam electrons gain enough energy to cause
ionizations (24.5 eV), a distribution of low-energy electrons
develops from the influx of secondary electrons. Since the
majority of secondary electrons are emitted with energies
less than 20 eV, the first inelastic threshold, their rate of
energy loss is small. By the end of the cathode fall, the elec-
tron distribution is dominated by the more numerous sec-
ondary electrons.

The fact that the calculated beam component of the dis-
tribution has a larger width, in energy, at the end of the
cathode fall than the energy width of secondary electrons
emitted from the cathode is a result, in part, of numerical
diffusion. The numerical spreading of density from a single
point when using the FCT method tends to be limited to only
afew adjacent cells, typically 2-3, independent of the time of
calculation or distance of convection. Using a low-order
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technique, such as the DCM, the spreading increases with
increasing time or distance over conceptually an unlimited
number of cells. Due to the steep gradient in electric poten-
tial ine the cathode fall, a spreading in x space corresponds to
a spread in potential energy. The spread in potential energy
is ultimately transformed to a spread in kinetic energy as the
cathode fall is traversed. The width of, for example, the beam
component in phase space is therefore determined by the
coarser of the spatial or velocity grids. Given this depen-
dence, the optimum computational grid has cell widths in x-
and v-space which have the same energy spacing (potential
energy for x, kinetic energy for v).

The electron distribution in the cathode fall obtained
using the bimodal velocity approximation for the same con-
ditions as above is shown in Fig. 5. That portion of the distri-
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bution labeled with negative energy has ~ v velocities (i.e.,
moving towards the cathode); positive energy denotes * v
trajectories (i.e., moving away from the cathode). The flux
of secondary electrons emitted from the cathode is the same
as that for the monomodal model. The boundary condition
at the cathode is reflective with respect to the flux in the ~ v
direction; f{ " vx =0} =f{ " vx=0). At the anode the
boundary condition is /{ 7 v,x = d, ) = 0. Electrons in either
haif of the distribution are transferred to the other half at one
half the rate of momentum transfer, as described by Eq.
(26). Note the near absence of a cathode directed electron
beam in Fig. 5. This results from the {act that the momentum
transfer cross sections in He at energies exceeding tens of eV
are low and there is a sparsity of secondary electrons emitted
at energies exceeding 10-20 eV. At low energies ( < 10 eV),
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FIG. 5. Electron velocity distribution { EVD) obtained by directly integrat-
ing Boltzmann’s equation using the bimodal velocity approximation and
FCT algorithms. The EVDs are shown at different locations within the
cathode fall, whose conditions are the same as in Fig. 3. The normalization
of the distribations iseV %, and the distribution is plotted using an energy
axis for clarity. Negative energy denotes irajectories moving towards the
cathode; positive energy denotes trajectories moving away from the cath-
ode. Note the sbsence of a cathode directed beam component, a conse-
quence of the low rate of momentum transfer at energies exceeding tens of
eV.
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where the momentum transfer cross sections are large, the
electron fluxes in the ~ v and ¥ v components have nearly
equal magnitudes, thereby yielding a nearly isotropic distri-
bution.

To quantify the anisotropy of the distribution using the
bimodal approximation, we define the parameter
_ () .

A0+ /0 0]
A beamlike distribution directed away from the cathode has
B==1, an isotropic distribution has £ = 0, and a beamiike
distribution directed towards the cathode has 8~ — 1. The
anisotropy of the distribution as a function cf electron ener-

gy at various positions in the cathode fall is shown in Fig.
6(a} for V, = 150 V. The energy averaged anisotropy as a
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FIG. 6. Anisotropy factor S of the electron velocity distribution (EVD)
obtained using the bimodal velocity approximation. 5 = 1 denotes an EVD
which is beamlike in the forward direction {(moving away from the cath-
ode), f# = O denotes an isotropic distribution and 8 = — 1 denotes a beam-
like EVD toward the cathode. (2) Anisotropy as a function of energy at
various locations within the cathode fall for a voltage of ¥, = 150 V. The
limiting beamlike character of the EVD increases with increasing distance
from the cathode. (b) Average anisotropy of the EVD as a function of posi-
tion from the cathode for fall voltages of ¥, = 150 and 300 ¥, and a gas
pressure of 1 Torr. The decrease in the beamlike nature of the distribution is
a result of the influx of secondary electrons; the increase results from the
lack of cathode moving electrons near the anode of 1.5 cm.
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function of position is shown in Fig. 6(b) for ¥, =150V
(d. = 1.3 cm) and 300 V (d. = 0.8 cm). The maximum
anisotropy as a function of energy increases (that is, be-
comes more forward beamlike) as one moves away from the
cathode since momentum transfer cross sections decrease
with increasing electron energy, and the maximum available
electron energy increases with distance from the cathode.
For eleciron energies below tens of eV where momentum
transfer cross sections are high, the distribution is fairly iso-
tropic regardless of position. The distribution averaged ani-
sotropy, as shown in Fig. 6(b), decreases with distance from
the cathode up to the end of the cathode fall, and then be-
comes more beamlike near the anode. The decrease in anisot-
ropy as one moves away from the cathode is a result of the
buildup of secondary electrons which quickly thermalize
due to their large momentum transfer cross sections, The
forward directed beam component is simultaneously being
depleted by collisions to lower energy where momentum
transfer is higher. For our particular conditions, the distri-
bution becomes more forward directed near the anode. This
is a consequence of the boundary condition
A 7 vx =d, ) =0, which leaves only forward directed elec-
trons near the ancde. Note that the distribution for ¥, = 300
¥V is both initially more beamlike, and later more isotropic.
This behavior results from the fact that the momentum
transfer cross sections are smaller for the more energetic
beam obtained with ¥, = 300 V, and so the distribution is
initially more forward directed. The more energetic beam,
however, has a higher rate of ionization and produces a larg-
er relative influx of secondary electrons near the edge of the
cathode fall. These secondary electrons guickly thermalize,
thereby reducing the anisotropy.

B. Comparison between FCT algorithms

The application of this method to the solution of BE is
subject to numerical effects which depend both on the com-
putational mesh and the specifics of the FCT algorithms
used. A comparison between EVDs at the boundary between
the cathode fall and negative glow using the DCM, DCM
with FCT correction, SHASTA FCT, and SHASTA LPE
FCT algorithms appears in Fig. 7. The mesh spacing is the
same for all examples. The DCM without FCT does not
preserve any of the structure of the distribution at high ener-
gies, a result of excessive numerical diffusion. The SHASTA
and DCM FCT algorithms give nearly identical results,
whereas the SHASTA LPE aigorithm preserves the beam-
like structure more accurately. It is, however, more sensitive
to variations in the flux limiters. The larger value of the dis-
tribution in the high-energy peaks yields a slightly higher
rate of ionization, resulting in a slightly larger relative den-
sity of secondary electrons at low energy. The increased ac-
curacy comes at only a few percent increase in the computa-
tion time.

The EVD at the end of the cathode fall is shown in Fig, 8
for ¥V, = 150V using two different grid resclutions. The sol-
id curve was obtained using a 1.5-eV separation between
mesh points, while the dashed curve was obtained using 0.75
eV per mesh point. The beam portion of the disiribution is
narrower and the underlving structure is better resclved us-
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FIG. 7. Comparison of electron velocity distributions in the cathode fall
(¥, =200V} using the low-order donor cell method (DCM) withoui flux
corrected transport (FCT), and three different FCT algorithms. The mesh
spacing is the same for all cases. The normalization of the EVDsiseV - %3,
plotted with an energy axis for clarity. The low-order IXCM is unable to
preserve any of the high-energy structure of the beam component; the
SHASTA LPE method is most accurate in that regard.

ing the finer mesh, as one would expect. Since the method is
conservative, the integral of the beam component is the same
in each method and the distribution averaged quantities are
not significantly different. The resolved peaks are a result of
successive energy losses of 20 eV for electronic excitation
and 25 eV for ionization. At low energy this structure is
buried below the secondary electron distribution'' and the
difference between the two grids is small. This exercise dem-
onstrates the ability of the FCT technigue to resolve detailed
features with a reasonable number of mesh points. Obtaining
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FIG. 8. The clectron velocity distribution for the conditions of Fig. 3 using
two grid resolutions: 1.5 and 0.75 eV /cell.

J. V. DiCarlo and M. J. Kushner 5771




an equivalenti resolution using conventional lower-order
technigues, such as the DCM without FCT, would require
5-10 times the number of mesh points, and proportionaily
more computer time.

C. Comparisons with Monte Cario simulations and
multibeam modeis

In this section, comparisons are made between our solu-
tion of Boltzmann’s equation using FCT and conventional
sclutions in order to validate our method. Comparisons are
made to the Monte Carjo simulations of Boeuf and Marode
(BM),! Tran and co-workers, * and to the multibeam model
of Carman and Maitland.'” In the simulation by Tran, only
forward scattering is allowed, which is equivalent to the
monomodal FCT model. In the simulation by Boeuf and
Marode, full angular scattering is included, which may be
compared to the bimodal approximation.

The electron convective drift velocity or average veloc-
ity vy = (v} and ionization coefficient & as a function of
position for ¥, = 150 V are shown in Fig. 9 using the FCT
monomodal and bimodal models. These are compared to the
results of the Tran and BM simulations. The ionization coef-
ficient is defined as « = k,/v,, where k, {(cm’s ') is the
rate coefficient for electron impact ionization. The results
from the monomodal FCT model and the forward scattering
Monte Carlo simulation of Tran agree well for both drift
velocity and itonization coefficient, thereby validating the
FCT method for these conditions. Near the cathode the elec-
trons are accelerated by the feld but do not decelerate by
coilisions until they reach the inelastic threshold energy, and
thus the convective drift velacity increases. As lower-energy
secondary electrons begin to dominate the distribution, and
the beam component is depleted, the convective drift veloc-
ity decreases.

The convective drift velocity obtained with the bimoedal
FCT initially agrees with the Monte Carlo simulation of BM
using full angular scattering, but diverges near the edge of
the cathode fall. The qualitative behavior, though, is similar.
The convective drift velocity is smaller than that obtained
with the monomodal models due to the influx of secondary
electrons which quickly thermalize to a smmaller net velocity
and which dominates the distribution near the edge of the
cathode fall. (A fully isotropic distribution would have
v, = 0.) The increase in convective drift velocity near the
anode (at d, = 1.5 cm) is a consequence of the boundary
condition f{ ~v, x = d,) = 0. The lack of cathode directed

‘electrons near the anode leaves dominantly forward directed
electrons, thereby increasing the net velocity. The average
velocity obtained using fully anisotropic elastic scattering in
the BM simulation is lower than that obtained using the
bimodal FCT model. Conceptually, having off-axis compo-
nents of velocity in the BM simulation keeps electrons in a
given spatial region longer than in the bimodal FCT. There-
fore their local rates of collision are higher, momentum
transfer more complete, and average velocity lower. Because
the convective drift velocity is lower in the BM simulation,
the ionization coefficient is higher than that obtained from
the bimodal FCT model even though the number of net ion-
izations is virtually the same in each case. This is an artifact
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FIG. $. Transport coefficients obtained from our solution of Boltzmann's
equation using the monomaodal and bimodal approximations with FCT al-
gorithms: (a) Convective drift velocity and (b) ionization coefficient a.
The cathode fall voltage is 150 V. Comparisons are made to the Monte
Carlo simulations of Tran and co-workers {Ref. 13), and Boeuf and Mar-
ode (Ref. 1). The bimodal solution and the Monte Carlo simulation using
full angular scattering (Boeuf and Marode) predict lower convective drift
velocities due to the high isotropy of the secondary electrons. The high value
of a for the nonforward directed solutions results parily from their lower
convective drift velocities.

of the definition of o, which is inversely proportional to v,.

The multibeam method of Carman and Maitland’®is a
one-spatial-dimension model which calculates the energy
distribution of the electron flux. In the multibeam model, the
forward directed flux at position x and energy &, j(e,x) is
obtained from

Jle — eBE(x)8x,x + 6x) = j{ex)exp{ — No,(€)dx)

(X}
+ (ZJ J(€x)o,(€YNS[e — (e + Ag;) ]de’)éx,

(28)
where ¢ is the local electrical potential, £ is the electric field,
oy is total cross section for inelastic energy loss, and g, is the
cross section for loss of energy Ae, for process £. The terms of
Eq. (28) are for depletion of a beamlet by collisions, and for
the influx of electrons to the beamlet from collisions at high-
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er energy. An additional term is added for the influx of sec-
ondary electrons from ionizations. Numerical effects are
minimized by precisely choosing Ae = Ax(eE).

The flux multiplication factor j, (x)/f. (0} and average
flux energy obtained with the monomodal FCT method are
compared to the results of Carman and Maitland in Fig. 10
for four different cathode fali voltages. The two methods
agree fairly well. A flux multiplication of 2-3 is typical for
cathode falls in He and this result is obtained by each meth-
od. The average flux energy initially increases due to the
distribution being dominated by the beam component. The
average fiux energy then decreases as the beam is depleted
and the distribution begins to be dominated by low-energy
secondary electrons. The fraction of the cathode fall voltage
obtained by the average flux energy increases with increas-
ing V.. This effect is a result of the cross sections for inelastic
energy loss having their maximum values at S 150eV. When
this value is exceeded, the beam component persists. This
effect is more clearly seen in Fig. 11 where the electron flux
distributions obtained wsing the FCT algorithms at the
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FIG. 10. Comparisen of results from the monomodal FCT model and the
multibeam method of Carman and Maitland (Ref. 10} for different cathode
fall voitages V,.: (a) fiux multiplication, j(x}/j(x = 0} and {b) average
flux energy.
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FIG. 11. Electron flux distributions at the boundary between the cathode
fall and negative glow in helium obtained using the monomodal FCT algor-
ithms. Distributions are shown for increasing cathode fall voltages V.

boundary between the cathode fall and negative glow are
plotied for increasing cathode fall voltage.

V. CONCLUDING REMARKS

The application of flux corrected transport (FCT) to
direct integration of the spatially dependent Boltzmann’s
equation (BE) for the electron velocity distribution using
finite differences has been investigated. Directly integrating
BE has the advantage of being an exact solution, subject to
constraints on dimensionality, but suffers from mechanical
inaccuracies such as numerical diffusion. The use of FCT
alleviates many of the effects of numerical diffusion. The
electron distributions ¢btained by this method agree well
with other computational techniques using the monomodal
representation. The transport properties obtained using the
FCT method incorporating the bimodal velocity approxi-
mation closely resemble those obtained using the fully aniso-
tropic Monte Carlo simulation of Boeuf and Marode.! The
agreement with other computational techniques and with
experimental results is more dependent on the physical as-
sumptions of the model, such as scatiering mechanisms,
rather than on any conceptual imitations of the method.

Using FCT to integrate Boltzmann's equation elimi-
nates many of the detriments of using finite differences or
variances thereof. In particular, the mesh may have arbi-
trary spacings, which is not the case in the multibeam imple-
mentation. The greatest limitation of the method, however,
is the restriction on the time step set by the Courant Hmit.™
Although the FCT algorithms do require more operations
per time step than standard finite difference methods, the
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FCT algorithms usually execute faster. This is a result of the
fact that the number of mesh points required to obtain a
given resolution is much smaller than in, for example, the
DCM. The use of fewer, more widely spaced mesh points,
also corresponds to a larger Courant limited time step, there-
by further increasing the speed of the algorithm. When
steady-state spatiaily dependent electron distribution func-
tions at low gas pressure and high voltage are desired, the
small time step dictated by the Courant limit may make oth-
er algorithms more attractive, such as Monte Carlo simula-
tions or the convective scheme of Sommerer, Hitchon, and
Lawler,'? At higher pressures and with transients in the elec-
tric field, methods which directly integrate BE, such as that
presented here, may be preferred.
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