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A new method for obtaining spatially resolved electron energy distributions is described and 
applied to cylindrical bore electric discharges. The method is based on a modified two-term 
spherical harmonic expansion of Boltzmann’s equation in which energy-resolved drift and 
diffusion are included, as well as Joule heating or cooling by the ambipolar field. It is found that 
low-energy electrons may be heated by the large ambipolar electric field gradients near the wall 
while higher-energy electrons may escape the plasma. Therefore, diffusion cooling and Joule 
heating in the ambipolar field may simultaneously occur, but for different portions of the 
electron energy distribution. 

I. INTRODUCTION 

A widely accepted method for obtaining the electron 
energy distribution (EED) in partially ionized gases is to 
solve Boltzmann’s equation using a spherical harmonic ex- 
pansion. l-3 In applications where the electron scattering is 
predominantly isotropic and momentum transfer is domi- 
nated by elastic collisions, solutions that retain only the 
first two terms in the expansion usually yield sufficiently 
accurate results. Higher-order expansions, retaining up to 
ten terms, have been used when electron scattering is an- 
isotropic or when momentum transfer results from inelas- 
tic collisions, as may occur when vibrational or rotational 
excitation cross sections are large.’ Fully resolving Boltz- 
mann’s equation in both position and velocity is a compu- 
tationally intensive task. For this reason, solutions of 
Boltzmann’s equation using spherical harmonic expansions 
(SHE) are almost always spatial averages. 

In applications where it is either desirable or necessary 
to spatially resolve the EED, solutions other than the SHE 
are usually used. Monte Carlo simulations,4 particle-in-cell 
models,5 multibeam representations,6 or direct integrations 
of Boltzmann’s equation7 have been successfully used in 
this regard. One can, however, use the SHE to obtain spa- 
tial information on the EED under somewhat stringent 
conditions. If the rate at which the EED equilibrates with 
the electric field is large compared to either the time or 
spatial frequency with which the electric field varies, then 
one can approximate that the EED is in equilibrium with 
the instantaneous local electric field, f(e,r,f) =F[E/ 
N(r,r)], where E/N is the electric-field/gas-number den- 
sity. The local EED can then be obtained using a two-term 
SHE based on the local field,* a practice known as the 
local-field approximation (LFA) . 

The cylindrical positive column glow discharge is one 
of the most studied low-temperature plasmas.’ Although 
usually analyzed as having a uniform axial electric field, 
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there are two effects that can lead to significant variations 
in E/N as a function of radius. The first is volumetric gas 
heating which can result in rarification of the gas on the 
axis. This causes the E/N on the axis to be larger than the 
E/N near the walls. The second effect is the ambipolar 
space-charge field. The purpose of the space-charge field, 
pointing radially outward, is to retard the flux of electrons 
diffusing to the walls to b equal to that of the ions. Simple 
diffusion theory states that the ambipolar electric field E, 
in positive column discharges scales roughly as kTJqA,‘O 
where T, is the electron temperature and A is the diffusion 
length of the column. E, can have values comparable to the 
applied axial electric field. The radial electric field has been 
measured by observing the Stark shift of Rydberg-excited 
He atoms in a positive column, and values exceeding tens 
of Vcm-’ were obtained.” 

In all cases where there is an ambipolar electric field, 
the magnitude of the total vector electric field exceeds that 
of the applied axial electric field. A number of works have 
attempted to account for the combined effects of the radial 
electric field and space-charge potential 4(r) on the elec- 
tron energy distribution. 12-17 Bernstein and Holstein’2 in- 
vestigated the average EED in a parallel-plate discharge 
where there is no loss of electrons to the wall, and hence no 
diffusion cooling, and where E, is large compared to the 
applied axial field. They found that by including the effects 
of the space-charge field, the tail of the EED was enhanced 
and ionization rates increased, though the effect was small. 
This additional ionization conceptually results from elec- 
trons near the wall which are accelerated by the axial elec- 
tric field to energies near to the ionization threshold. The 
electrons may then elastically diffuse towards the center of 
the discharge, thereby gaining energy in excess of the ion- 
ization potential by “falling” down the space-charge poten- 
tial. This effect has been termed “diffusion heating.“” Due 
to computational limitations at the time, Bernstein and 
Holstein were only able to obtain a spatially averaged EED 
while ignoring the loss of electrons to the wall. The latter 
assumption precludes the effects of diffusion cooling, where 
high-energy electrons leave the discharge at a higher rate 
than lower-energy electrons. 
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Assuming a parabolic radial potential, Tsendin and 
Golubovskii16 were able to radially resolve the EED for the 
case R > 2, where R is the radius of the discharge tube and 
,l. is the electron mean free path. They found that there are 
two energies at which the slope of the EED changes (or at 
which the EED is “cut off’). The first corresponds to the 
threshold for inelastic collisions. The second corresponds 
to the ambipolar potential. Electrons with an energy 
greater than this value are able to climb the space-charge 
hill and leave the plasma. 

Bhattacharya and Ingold” calculated electron and ion 
temperatures in an afterglow using a hydrodynamic formu- 
lation for the heavy particles and a Maxwellian velocity for 
the electrons. They allowed electrons to have energies 
greater than the space-charge potential, and therefore 
reach the wall. These calculations, when compared to ex- 
perimental data, revealed some evidence of diffusion cool- 
ing. Ferreira and Ricard2’ developed a model for low- 
pressure argon positive column discharges which also 
allows velocity-resolved electron losses to the wall, but the 
EED is taken as a spatial average. Their results show good 
agreement with experiment for pressures below 0.1 Torr 
where the electron mean free path is commensurate with 
the radius of the discharge tube, but the agreement is less 
good at pressures above that value, an effect the authors 
attribute to the EED being a function of radius at the 
higher pressure. 

As mentioned above, spherical harmonic expansions 
are not traditionally used when the LFA cannot be applied 
and when spatial variations in the EED are expected. The 
two-term SHE is based, however, on elastic collisions dom- 
inating momentum transfer and on momentum-transfer 
collisions being primarily isotropic. Given this basis, one 
might expect that the two-term SHE can be applied to 
spatially resolving the EED in discharges where diffusion is 
the dominant form of electron transport. Based on this 
expectation, we have developed a method of spatially re- 
solving an EED using the two-term SHE, and in this arti- 
cle we present spatially dependent solutions to Boltz- 
mann’s equation using that method. The model system is a 
positive column cylindrical bore discharge where the total 
E/N is a function of position due to the consequences of 
the radial space-charge field. Radial transport is accounted 
for by formulating a set of partial differential equations 
based on the local two-term SHE and adding velocity- 
resolved drift and diffusion. The heating, or cooling, effects 
of the ambipolar electric field are also included by treating 
the Joule heating term as a vector product of the axial and 
radial current densities with the axial and radial electric 
fields. 

We find that radial electron transport significantly per- 
turbs rate coefficients for high threshold processes com- 
pared to those values one would obtain using the LFA. 
Akin to the diffusion cooling effect, as studied by Biondi2’ 
and others, 15,1%22,23 higher-energy electrons diffuse against 
the space-charge field and leave the system at a faster rate 
than low-energy electrons. This lowers rate coefficients for 
high threshold processes. The effects of the ambipolar elec- 
tric field are less straightforward. The dominant effect of 

the radial electric field is to slow the transport of the 
higher-energy electrons which would otherwise stream out 
of the plasma thereby equilibrating the total flux of elec- 
trons and ions. At the same time, low-energy electrons 
which are nearly in equilibrium with the local electric field 
see a net higher field, a consequence of the vector sum of 
the axial and radial components. Under these conditions, 
the bulk electron temperature can increase at larger radii 
where the total electric field is larger, while high threshold 
energy rate coefficients decrease because of the loss or 
slowing of the higher-energy electrons. 

In Sec. II we describe our model while applications of 
the model to He/Hg plasmas and Ar/Hg plasmas are dis- 
cussed in Sec. III. Comparisons to previous work are made 
in Sec. IV, and our concluding remarks are in Sec. V. 

Il. DESCRIPTION OF THE MODEL 

The two-term SHE solution of Boltzmann’s equation 
for the EED is based on the assumptions that elastic 
momentum-transfer collisions dominate electron transport 
and that the collisions are dominantly isotropic. These are 
conditions for which electron transport in the presence of 
gradients is dominated by diffusion. Given these conditions 
we modeled the spatially dependent EED in cylindrical 
glow discharges using a radially resolved two-term SHE 
augmented by energy-dependent drift and diffusion perpen- 
dicular to the axis. Conceptually, we solve the two-term 
SHE for the EED at given radial points using the local 
electric field at those points. The EED at each radial point 
is coupled by energy-resolved diffusion resulting from den- 
sity gradients. By solving for the ambipolar radial electric 
field, energy-resolved advective transport can also be in- 
cluded. The local value of the radial electric field is also 
used in the Joule heating term of the SHE to account for 
heating or cooling of the electrons resulting from the am- 
bipolar field. Although our model system is a cylindrical 
glow discharge, the methodology can be extended to other 
geometries. 

Our implementation of the two-term SHE is based 
on the discretization method employed by Rockwood. 
Boltzmann’s equation using the two-term SHE at radial 
location r can be written as 

where f(e,r) is the EED for energy E at radius r, having 
units cme3 eV-‘, and Y(E) is the collision frequency for 
momentum transfer. In Eq. ( 1) the first term on the right- 
hand side accounts for Joule heating from the applied axial 
field E, while the second term accounts for elastic and 
inelastic collisions, both with the gas and with other elec- 
trons. The collision term depends only on local values of 
f(e,r) and on the local density of collision partners. Since 
this term does not directly affect radial electron transport, 
and our implementation of the collision term (including 
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electron-electron collisions) is identical to that of Rock- 
wood,24 we will not describe it further. When considering 
only local effects in solving Boltzmann’s equation, the 
terms in Eq. ( 1) are adequate for the analysis. To denote 
this condition, we use the subscript L. 

To spatially resolve the EED, additional terms to Eq. 
( 1) must be considered. To include radial transport, we 
modified Eq. ( 1) to 

a.0 w) af k,r) 
at= ( 1 - 

a* L 
+V,* t D(v) l VJ(e,r) 

+p(w9 l E,Wf(w91, (2) 

with the direction of the ambipolar field E, defined as being 
positive when pointing away from the axis. When the 
transport terms are averaged over the EED, one obtains 
the conventional expression for space-charged-limited 
transport, V,* ( Da* V,JZJ, where Da is the ambipolar diffu- 
sion coefficient. The exceptional points of Eq. (2) are that 
by energy resolving the advective and diffusive transport, 
different portions of the EED may be dominantly affected 
by different modes of transport. For example, E, is deter- 
mined in large part by the transport coefficients of the 
more numerous low-energy electrons which have large 
momentum-transfer cross sections. E, may not be large 
enough, however, to confine more mobile higher-energy 
electrons. Diffusion will therefore dominate the latter 
group’s transport. Conversely, highly collisional electrons 
that are in strict equilibrium with the local electric field 
may, in fact, convect radially inward in response to the 
ambipolar field and be heated to higher energies than by 
the axial electric field alone. 

In Rockwood’s formulation of Boltzmann’s equation, 
the Joule heating term accounts for the divergence of the 
flux of electrons in energy space resulting from acceleration 
by the electric field.24 This can be more simply seen by 
rewriting the Joule heating term of Eq. ( 1) as 

i* [j(e) .E]( I-?.?$!! )I , 

j(e) = 
e2f(w)E(r) 

m,v(w) ’ (3) 

where Y(e,r) is the momentum-transfer collision fre- 
quency, and j(e) is the local energy-resolved current den- 
sity obtained using the local electric field. When written in 
this form, the contribution of the ambipolar electric field to 
the energy balance can be accounted for by including both 
the axial and radial components of the current density and 
electric field in the dot product of Eq. (3). That is, 

j-E= (jE),+ WI, (44 

E,=E, jr=q* D(w)V,f(e,r) +p(e,r)EJ(w). (4b) 
In Eq. (4), the radial current density contains both advec- 
tive and diffusion terms. Diffusion of electrons “against” 
the ambipolar field results in negative Joule heating, or 
cooling. This term conceptually accounts for the energy 
transferred from electrons accelerated by the axial electric 

field to ions accelerated by the radial ambipolar field. The 
advective term of Eq. 4(b) accounts for positive Joule 
heating of the electrons by the ambipolar field. Should 
energy-resolved advection in the ambipolar field dominate 
over diffusion a given portion of the EED may, in fact, be 
heated by the ambipolar field while another portion is 
cooled. Our final form of Boltzmann’s equation is then 

2~ WW) 
lpfmaf 

+V,* [D(w) l VJ(w-) 
c 

+pFL(=w) l FAr)f(w) 1. (5) 
The radial ambipolar field can be approximated by re- 

quiring that the local radial flux of ions be equal to the 
radial flux of electrons. This leads to the well-known ex- 
pression for the ambipolar field, 

-Ur) = 
QgVAe-Wfl~ 

PY~+PINI ' 
(6) 

where the subscripts e and Z denote electrons and ions, D 
and ~1 are the swarm-averaged diffusion coefficient and mo- 
bility at location r, and N is a density. In our model, the 
swarm-averaged quantities are calculated by integrating 
over the spatially resolved EED and we obtain 

-&E,(r) = 
J,?‘D(er) l VJ(E,T)~E--D~V,.N~ 

~INI+S~~~L(E,~)~(E,~)~E ' 
(7) 

where D( e,r) and p (e,r) are the electron-energy-resolved 
diffusion coefficient and mobility, respectively. These 
energy-resolved transport coefficients are approximated as 

D(w) =!* 
E 

3 mev(E,r)’ p(w9= ’ m,v(d 

where m, is the electron mass and v is the energy-resolved 
momentum-transfer collision frequency. At sufficiently low 
pressures and high energies, the apparent thermal-diffusion 
velocity may exceed the thermal velocity v,. In these cases, 
D(w) is restricted to the smaller of the value in Eq. (8) 
and A* v, where A is the local diffusion length. 

The self-sustaining, steady-state E/N was obtained by 
finding that value which balances the volumetric rate of 
ionization with the rate of electron loss to the wall. This is 
obtained by assuming no volumetric recombination and 
solving 

= s [D(E)V,~(E,R)+~L(E)~(E,R)E,(R)I~?~R de, 
(9) 

where R is the radius of the discharge tube. 
Our method for obtaining f(e,r) is to directly inte- 

grate Eq. (5) in time until the distribution reaches a steady 
state. Computationally, the Joule heating and collision 
terms were expressed in the same fashion as Bretagne, Go- 
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FIG. 1. The electron energy distribution (EED) as a function of radius, calculated using the fully coupled scheme: (a) 1 Torr and (b) 3 Torr. The 
distributions are separately normalized at each radial point. The insets show the EED at the center of the discharge and at the wall. 

dart, and Puech,25 which was itself an  implementation of 
Rockwood’s method.24 Electron-electron collision terms 
were implemented in the same fashion. The  spatial trans- 
port terms were couched using finite differences and the 
donor  cell method. The boundary conditions are that spa- 
tial derivatives are zero on  the axis and all densities are 
zero at the wall. Although the latter boundary condition is 
not strictly true in some cases, as discussed by Metze, 
Ernie, and Oskam,26 the deviation is small and does not 
substantially at&t our results. The  system of equations 
was integrated using a  third-order Runga-Kutta technique 
with adaptive step size. W e  typically used 15-20 radial 
cells and 40-60 energy cells in our calculations. 

III. RADIALLY RESOLVED ELECTRON ENERGY 
DISTRIBUTIONS 

In this section, we will discuss results for radially re- 
solved EEDs obtained with our mode l. Since the original 
motivation in developing this mode l was to address issues 
related to Hg lasers and fluorescent lighting sources, our 
sample systems use rare-gas/Hg m ixtures. The  base case 
uses conditions that are typical for a  pulsed recombination 
Hg laser discharge. The  cylindrical discharge tube has a  
diameter of 1.0 cm and a  gas fill of He/Hg=93/7. The  
cross sections for electron collisions with the mercury 
ground state were obtained from Rockwood. The elec- 
tron momentum-transfer cross section for He was obtained 
from Hayashi,27 while the excitation cross sections were 
taken from Bouef and Marode. The ionization cross sec- 
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tion for He was obtained from Rapp and Englander- 
Go lden.29 Mob ilities for Hg+ and He+ in He and Ar, as 
given by Ellis et uL,~’ were used to determine the radially 
resolved amb ipolar field. Electron-electron collisions were 
included in the calculations in the manner  discussed above. 

Radially resolved EEDs obtained for full coupling are 
shown in F ig. 1  for total gas pressures of 1  and 3  Torr. [By 
full coupling, we refer to calculations that include all of the 
terms in Eq. (5).] The  amb ipolar potentials obtained by 
integrating the radial amb ipolar electric field for each case 
(including IO Tori-) are shown in F ig. 2. To  include the 
effects of superelastic and mu ltistep processes in the calcu- 
lation we specified that the metastable Hg density is [Hg*]/ 
N= 10m5 cos (?rr/2R). These densities are commensurate 
with those found in rare-gas-Hg positive-column dis- 
charges.3’ For comparison, EEDs calculated for the same 
conditions while using the LFA (that is, ignoring radial 
transport and joule heating by the amb ipolar field) are 
shown in F ig. 3. The  EEDs in the figure are separately 
normalized at each radial point. For these cases, we as- 
sumed that there was negligible gas heating, so that the gas 
density profile is uniform. At 1  Torr, the amb ipolar E/N 
adjacent to the wall is 43.6 Td  (1 Td= 1  X 10-l’ V cm2> 
while the axial E/N is 14  Td. At 3  Torr, the amb ipolar 
E/N adjacent to the wall is 13.9 Td  with an  axial E/N of 
6  Td. In both cases, the amb ipolar E/N exceeds that due to 
the applied electric field. 

At 1  Torr, the fully coupled case is depleted of high- 
energy electrons in the tail of the EED across the radius 
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FIG. 2. Calculated ambipolar potentials for fully coupled cases obtained 
by integrating the ambipolar electric field. The conditions are the same as 
in Fig. 1. 

compared to that using the LFA. This depletion results 
from the diffusion of high-energy electrons (which have 
longer mean free paths) against the field to the wall. The 
depletion is somewhat more severe near the wall. The EED 
shows evidence of being cut off approximately at the am- 
bipolar potential, as predicted by Tsendin and Gol- 
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ubovskii.‘6 The effect of the space-charge field, increasing 
toward the wall, is to decelerate the electron flux relative to 
the LFA case. This increases the thermal portion of the 
EED near the wall. Due to the high self-sustaining E/N, 
the effects of energy loss due to electronic excitation of Hg 
and energy gain due to superelastic relaxation are not as 
readily apparent in the fully coupled case, although they 
can be seen in the LFA case. 

At 3 Torr, the same trends as in the 1 Torr case can be 
seen, though not to as great an effect. Since the electron 
mean free paths are shorter, the diffusion cooling effect is 
less pronounced. The electron flux is, though, still deceler- 
ated by the ambipolar electric field, creating a large ther- 
mal component by the wall. The self-sustaining E/N is 
lower at 3 Torr and therefore the effect of energy loss and 
gain by excitation and superelastic collisions can be more 
readily seen. The EED is cut off at approximately 5 eV 
commensurate with the inelastic threshold for exciting the 
Hg( ‘P) states. Superelastic relaxation of those states by the 
numerous thermal electrons increases their energy by the 
same 5 eV. The result is that an increase in the tail of the 
distribution above 5 eV, somewhat “mirroring” the ther- 
mal distribution. The superelastically heated tail of the 
EED is nearly constant as a function of radius at inner 
radii when using the LFA, while that of the fully coupled 
case begins to show evidence of diffusion cooling. 

Recall that the Hg( ‘P) density was specified to have a 
cosine profile, which falls steeply at the wall. This distri- 
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FIG. 3. The EED as a function of radius calculated using the local-field approximation (LFA) for the same conditions as in Fig. 1: (a) 1 Torr and (b) 
3 Torr. The insets show the EED at the center of the discharge and at the wall. The EEDs at 1 Torr are nearly uniform as function of radius in spite 
of the differences in superelastic heating. At 3 Torr the EED near the wall is depleted of superelastically heated electrons. 
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bution causes a depletion of the super-elastically heated 
electrons near the wall in both the LFA and fully coupled 
cases. In the LFA case, the superelastically heated tail is 
nearly absent at the wall, while in the fully coupled case the 
tail at the wall persists to a greater degree. This effect 
results from radial transport of superelastically heated elec- 
trons at inner radii towards the wall. 

The radially dependent EED is determined by convec- 
tion in both coordinate (i.e., r) space and velocity space. 
The degree to which convection in velocity space caused by 
the ambipolar electric field affects the EED is shown in 
Fig. 4. In this figure, we show the EED for 3 Torr when we 
included electron drift and diffusion in the ambipolar elec- 
tric field; however, the Joule heating (or cooling) terms 
have been neglected. Note that the distribution is depleted 
of electrons at energies below the inelastic threshold near 
the wall. This effect is due to the drift of these electrons 
back toward the axis in the ambipolar field at a faster rate 
than elastic momentum-transfer collisions are able to ad- 
vect electrons down the energy axis. Below the inelastic 
threshold, advection down the energy axis is a slow process 
because it proceeds at a fractional rate of only 2mJM per 
collision. The cooling of the superelastically heated tail 
near the wall is also diminished relative to the center of the 
discharge. This implies that the effects of diffusion cooling 
can be averaged over the bore of the discharge whereas the 
dominant cooling effect near the wall results from energy 
exchange with the ambipolar field. 

Electron temperatures (T,= i(e)) as a function of 
radius for the 1 Torr case described above, and a similar 
calculation at a pressure of 10 Torr (self-sustaining E/N 
=3.5 Td), appear in Fig. 5. As expected, when using the 
LFA the electron temperature is uniform as a function of 
radius since the E/N is uniform across the bore. The effect 
of superelastic heating on the bulk electron temperature is 
nominal. When including convection (drift and diffusion) 
but excluding the ambipolar Joule heating (or cooling), 
the electron temperature is reduced on the axis and in- 
creased near the wall relative to the LFA case. The de- 
crease near the axis results from a spatially averaged loss of 
higher-energy electrons to the absorbing wall, resulting in 
the lower average energy. The increase in the local electron 
temperature near the wall results from the depletion of 
low-energy electrons by drift away from the wall in the 
high ambipolar field, as shown in Fig. 4. Similar effects are 
predicted by Bernstein and Holsteini and others.15-17 
When fully resolving the EEDs, the calculated electron 
temperature is lowered throughout the volume. The reduc- 
tion in temperature near the axis is due to the diffusion of 
high-energy electrons as described above. The weak maxi- 
mum in T, near 0.5 cm indicates some small amount of 
diffusion heating (see below). Near the wall, the decrease 
is dominantly due to Joule “cooling” which occurs when 
electrons diffuse against the ambipolar field. At 10 Torr, 
the distribution-averaged effects of diffusion heating are 
absent and T, monotonically decreases towards the wall as 
the ambipolar field increases. 

Recalling that low-energy electrons, which are far 
more numerous, have a higher rate of momentum transfer 
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FIG. 4. The EED as a function of radius obtained while including elec- 
tron diffusion and drift, but excluding Joule heating by the ambipolar 
field. The inset shows the EED at the center of the discharge and at the 
wall. The electron density near the wall is depleted of low-energy elec- 
trons due to advection in the large ambipolar fields. 

than high-energy electrons, the LFA is a more accurate 
description for their transport. Since the magnitude of the 
local field is higher near the wall, one might expect that the 
temperature would increase there as well. As we saw, how- 
ever, the dominant direction of transport by diffusion is 
against the field, and hence there is cooling. Since the 
higher-energy electrons do not obey the LFA, there should 
be no expectation that rate coefficients having high-energy 
thresholds will scale in a similar fashion as a function of 
radius as does T,. The effects of electron transport and 
joule heating by the ambipolar field are, perhaps, most 
telling on the rate coefficients for excitation and ionization 
for processes having high-energy thresholds. 

The rate coefficient for ionization of the Hg ground 
state, normalized to its maximum value, is shown in Fig. 
6(a) as a function of radius using the LFA and in Fig. 
6(b) using the fully coupled method. The rate coefficients 
obtained using the LFA generally decrease across the ra- 
dius, reflecting the decreasing contribution of superelasti- 
tally heated tail electrons. When allowing for radial trans- 
port, the rate coefficients for ionization also decrease across 
the radius. There is a smaller decrease near the wall in the 
fully coupled case. At smaller radii, we see the effects of 
diffusion and Joule cooling. At larger radii, we see the 
effects of mixing of the superelastically heated electrons as 
a function of radius which heats the distribution above the 
inelastic threshold. These trends are more clearly seen in 
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FIG. 5. The electron temperature at (a) 1 Torr and (b) 10 Torr. Results 
are shown for the local-field approximation (LFA), full coupling, and 
when excluding the Joule heating due to the ambipolar electric fields. 
Whereas the LFA case does not vary across the radius, including only 
electron drift and diffusion artificially heats the distribution near the wall. 
By adding ambipolar Joule heating, the distribution is cooled near the 
wall by the exchange of energy between the electrons and the ambipolar 
field. 

FIG. 6. Ionization rate coefficients for ground-state Hg as a function of 
radius at different pressures calculated using (a) the LFA and (b) the full 
coupled scheme. The rate coefficients have been normalized by their max- 
imum values on the axis. The decrease in rate coefficients in the LFA case 
results from a lower rate of superelastic heating. That in the fully coupled 
case results largely from ambipolar cooling. 

To discern which of these effects, (transport losses or 
Joule heating/cooling) are dominantly responsible for the 
observed change in rate coefficients relative to using the 
LFA, the following computer experiment was performed. 
The radially dependent EED was calculated while includ- 
ing the transport terms in Eq. (8) but excluding radial 
Joule heating. These rate coefficients were used to normal- 
ize the values obtained using the fully coupled case and the 
results are shown in Fig. 8. The effects of Joule cooling are 
larger at lower pressures where the ambipolar fields and 
electron temperatures are higher. For these conditions, the 
dominant cooling effect appears to be the interaction of 
electrons with the ambipolar field. The cooling effects are 
more localized near the wall where the ambipolar field is 

Fig. 7 where the rate coefficients for ionization and excita- 
tion are normalized by their values obtained using the 
LFA. In the case of excitation of Hg( ‘P), the rate coeffi- 
cients uniformly decrease relative to their LFA values due 
to diffusion cooling effects. The ionization rate coefficients, 
which are more responsive to the tail of the EED, behave 
differently. The rate coefficients generally decrease relative 
to the LFA values, more so at low pressure. The rate co- 
efficient, though, increases relative to the LFA value near 
the wall at higher pressures. This results from the radial 
transport of high-energy superelastically heated electrons 
into a region near the wall where the excited-state density 
is lower and the local rate of superelastic heating is lower. 
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FIG. 7. Rate coefficients for electron impact on Hg obtained using the 
fully coupled scheme normalized by their values using the LFA: (a) 
excitation and (b) ionization. Enhancements in the ionization coefficients 
near the wall relative to the LFA results from the lack of superelastically 
heated electrons at those locations using the LFA. 

large at higher pressure due to the reduced amount of 
radial mixing of the EED. 

The consequence of radial transport in the EED on 
excited states in the fluorescent lamp were investigated for 
the conditions of Dakin and Bigio.3’ In their article, abso- 
lute measurements of densities of the Hg(3P) manifold 
were reported for ArA-Ig mixtures. The fill pressure of the 
buffer gas was 2.81 Torr Ar, the gas temperature was 313 
K, dc current was 400 mA, and the tube radius was 1.7 cm. 
In our model we included an effective metastable state, 
Hg*, which is the degeneracy-weighted combination state 
of the 3P manifold assuming rapid mixing. We also in- 
cluded an effective higher-lying excited state, Hg**, repre- 
senting 17 Hg I levels.32 The cross sections used for exci- 
tation of Hg* were taken from Rockwood. The excitation 
and ionization cross sections for the Hg** state from the 
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FIG. 8. Rate coefficients for electron impact on Hg obtained using the 
fully coupled scheme normalized by their values obtained while excluding 
heating/cooling by the ambipolar electric fields: (a) excitation and (b) 
ionization. 

ground and Hg* states were obtained from the generalized 
formulas found in Drawin. An effective lifetime for Hg* 
which takes into account radiation trapping was calculated 
from van de Weijer and Cremers,34 and was found to be 7.5 
p.s. Diffusion coefficients for Hg atoms were calculated 
from expressions found in Hirschfelder, Curtiss, and 
Bird.3’ Partial differential equations including electron- 
impact excitation and quenching, heavy particle reactions, 
radiative relaxation, and transport by diffusion were 
couched in finite difference form using the donor cell 
method. The system of equations were implicitly solved 
using an iterative matrix inversion technique. 

The densities of Hg* calculated as a function of radius 
obtained using the fully coupled scheme and neglecting 
ambipolar Joule heating are shown in Fig. 9(a) together 
with the experimentally determined values.3’ Both ap- 
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proaches yield densities comparable to values obtained in 
the experiment with a moderate depletion of the calculated 
densities at larger radii. This disagreement may be attrib- 
uted to our poor representation of radiation transport or 
neglecting rarification due to gas heating. When excluding 
the terms for the ambipolar power, the predicted Hg* den- 
sity is somewhat larger than that for the fully coupled case. 
The predicted electron temperature and normalized meta- 
stable ionization rate coefficient for these cases are shown 
in Figs. 9 (b) and 9 (c) . In the absence of Joule cooling by 
the ambipolar field, the electron temperature and rate co- 
efficients increase near the wall due to the depletion of 
low-energy electrons by the ambipolar field. In the fully 
coupled cases, Joule cooling more than compensates for 
the advection of low-energy electrons away from the wall. 
Small maxima in both the electron temperature and rate 
coefficient are observed at intermediate radii in the fully 
coupled case, an effect we attribute to some amount of 
difIiision heating of the lower portion of the distribution. 
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FIG. 9. Discharge parameters for a cylindrical positive column discharge 
in an Ar/Hg gas mixtures similar to the fluorescent lamp studied by 
Dakin and Bigio (Ref. 31). (a) Density for our Hg* obtained using the 
fully coupled method, excluding the effects of ambipolar power and ex- 
perimental values obtained by Dakin and Bigio. (b) The electron tem- 
perature and (c) rate coefficient for electron-impact ionization of Hg* 
normalized by its maximum value. 

IV. COMPARISON WITH PREVIOUS WORKS 

As briefly discussed in Sec. I, the effects of space- 
charge fields and transport on the EED in cylindrical bore 
discharges have been previously addressed by others. One 
of the first works was by Bernstein and Holstein.12 Their 
treatment addressed conditions where the radial electric 
fields are much larger than the applied axial field. With this 
assumption, and the approximation that the loss of elec- 
trons to the wall is not important to the EED, they found 
a net higher rate of ionization on the axis of the discharge 
than one would obtain using the LFA. This is a conse- 
quence of the trapping of the electrons by the space-charge 
field. Electrons generated in high-space-charge regions by 
ionization are accelerated toward the axis by the ambipolar 
field, gaining a large fraction of the space charge potential. 
This condition requires that the plasma be largely collision- 
less. However, when the applied axial field is comparable 
to the ambipolar field, and the loss of electrons to the wall 
is significant, other scalings may result. 
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To demonstrate these effects we performed the follow- 
ing computer experiment. The EED was computed while 
excluding transport to the wall but including all other pro- 
cesses. The ambipolar field for this case was obtained from 
the fully coupled example. The Hg ionization rate coeffi- 
cient (normalized by that value obtained from a fully cou- 
pled case that includes transport to the wall) is plotted as 
a function of radius in Fig. 10(a) and the electron temper- 
ature is shown in Fig. 10(b). While the assumption that 
there is no transport to the wall makes little difference at 10 
Tot-r, the ionization rate is larger at 1 Torr when losses to 
the wall are ignored. Electrons at the lower pressure sam- 
ple a larger fraction of the volume, and hence losses at the 
wall impact a larger fraction of the ionization processes. Of 
the increase in electron temperature near the wall relative 
to the fully coupled case, approximately half is due to the 
retention of electrons which would have otherwise been 
lost to the wall, and half is due to additional heating of 
those electrons by the imposed ambipolar field. 
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Tsendin’( examined the effects of an inhomogeneously 
electric fields on the EED in a positive column. Tsendin 
considered electron diffusion in both space and energy as 
well as electron drift in a transverse electric field. The so- 
lution yielded a radial dependence for the electron temper- 
ature which decreased across the axis, in agreement with 
our results. Tsendin also found a pooling of the electron 
density at the axis, resulting from the potential well formed 
by the space charge. He excluded, however, the loss of 
electrons to the wall of the discharge tube. Zhihnskii and 
co-workers,” later considered the loss of electrons to the 
wall, and the resulting diffusion cooling. This effect was 
more pronounced at low pressures due to a decrease in the 
wall potential resulting from a significant depletion of tail 
electrons in the EED. He suggested that diffusion cooling 
is dominated by the work performed by the electrons in 
opposing the ambipolar forces in the plasma column as we 
found here.15 
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V. CONCLUDING REMARKS 

A model for the spatially resolved electron energy dis- 
tribution function has been developed and applied to the 
cylindrical bore positive column. In this model, the two- 
term spherical harmonic expansion solution for Boltz- 
mann’s equation is augmented by including energy re- 
solved drift and diffusion, and heating/cooling by the 
ambipolar electric field. We generally find a depletion of 
the high-energy component of the distribution which re- 
sults from at least two causes. The first is inelastic colli- 
sions with Hg. The second results from diffusion against 
the ambipolar field, and an enhancement in the thermal 
portion of the distribution near the wall. These effects are 
somewhat mitigated by the radial transport of superelasti- 
tally heated electrons from the axis, where the rate of heat- 
ing is high, to the wall where the rate of heating is low. 

FIG. 10. Results of a computer experiment where electron tlux to the wall 
is ignored: (a) rate coefficient for ionization and (b) eiectron tempera- 
ture. These coefficients and temperatures have been normalized by their 
values obtained from the fully coupled case. The ambipolar electric field 
for the case where electron flux to the wall is ignored was obtained from 
the fully coupled case. While the higher-pressure case shows little effect of 
allowing electron losses to the wall, at lower pressure the discharge is 
heated near the wall relative to the fully coupled case. 

higher energies. At p l d below 0.1 Torr cm, our assump- 
tions become questionable. In these cases, two approaches 
can be considered. The first is to treat the problem using a 
fully kinetic approach. The second is to assume that the 
EED is radially well mixed and use a radially averaged 
E/N. 

Our method of radially resolving the EED is easily 
extended to higher pressures. The necessity to do so, 
though, declines as p-d exceeds 10 Torr cm. The extension 
of this model to lower pressures, though, is limited by 
treating electron transport by drift diffusion, particularly at 

Another limitation to this model occurs at low pres- 
sures and large ambipolar fields. Recall that the two-term 
SHE assumes that the electron velocities are nearly isotro- 
pic and any directed velocities arising from the electric 
field are perturbations. In keeping with this approximation, 
the directed energy resulting from the radial transport 
should be a small fraction of the particle’s energy. We 
sometimes violate this criterion at low electron energies 
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(E < 0.5 eV) near the wall where the ambipolar electric 
fields are greatest. This condition will result in slightly 
higher calculated electron temperatures near the wall. 
However, the degree to which we violate the isotropic cri- 
terion is small enough to be within the range of error al- 
ready resulting from other assumptions in the model. 

A deficiency in the present model is our simple treat- 
ment of the transport of ions, whose densities are obtained 
by assuming quasineutrality. Metze and co-workersz6 
solved the radial transport equation and Poisson’s equation 
for the cylindrical bore positive column using ensemble 
averaged rate coefficients. They found differences between 
the electron and ion densities on the axis for our conditions 
of -5%, and increasing towards the wall to as much as 
20%. These differences, though important, do not directly 
affect our calculation since the ambipolar electric fields 
obtained using our method do not significantly differ from 
those obtained by Metze and co-workers.26 
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