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Abstract
Radiation trapping and transport are important to the power balance of low
pressure non-equilibrium plasma lighting sources. This is particularly the
case for radio frequency inductively coupled lamps having complex
geometries and where control of radiation trapping is an important design
consideration. To investigate these issues, a Monte Carlo radiation transport
simulation was developed and integrated into a two-dimensional plasma
dynamics model. Investigations were performed on the 254 nm
(6 3P1–6 1S0) and 185 nm (6 1P1–6 1S0) resonance radiation transitions from
Hg in Ar/Hg electrodeless discharges. We found that analytically computed
radiation trapping factors are less accurate when there is a non-uniform
density of absorbers and emitters, as may occur in low pressure lamps, in
our case due primarily to cataphoresis. For typical lamp conditions
(hundreds of mTorr fill pressure of argon with the vapour pressure of Hg,
a few megahertz driving frequency), the electromagnetic skin depth is much
larger than the size of the vessel. Therefore, the frequency of excitation does
not appreciably affect the distribution of absorbers and emitters, and so has
little effect on radiation trapping. Studies were performed on industrially
available lamp geometries. We found that the shape of the plasma cavity
influences trapping factors, primarily due to the consequences of transport
of Hg ions on the distribution of radiators.

1. Introduction

Electrodeless radio frequency (rf) powered gas discharges
are finding increasing use as lighting sources, particularly as
fluorescent lamps, primarily due to their increased lifetime
and improved efficiency. The lack of internal electrodes
reduces ageing issues (e.g. electrode sputtering) and reduces
power losses from the cathode fall. The devices of
interest are fluorescent lamps operating in rare gas–Hg
mixtures, usually Ar/Hg [1, 2]. These electrodeless sources
typically operate at lower gas pressures (hundreds of mTorr)
than those of conventional linear positive column lamps
(a few to 10 Torr) and with larger mole fractions of Hg.

3 Author to whom any correspondence should be addressed.

In such lamps, ultraviolet (UV) resonance radiation from
Hg(254 nm, 6 3P1–6 1S0; 185 nm, 6 1P1–6 1S0) is absorbed by
phosphors on the internal walls of the lamp. The phosphors
in turn generate visible light. The resonance radiation may
be absorbed and re-emitted many times in the plasma during
its transit from the initial sites of emission to striking the
phosphor. This process, commonly called radiation trapping
or imprisonment, lengthens the effective lifetime of the excited
state as viewed from outside the lamp [3]. The time required
for any given quantum of energy to escape the plasma is longer
due to this series of absorption and re-emission steps.

Radiation trapping by itself is not necessarily detrimental
to the operation of the lamp or to its efficiency. In the absence
of other processes, the photons do eventually escape, as in
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the steady state the rate of photon escape equals the rate of
initial generation of quanta. The longer effective lifetime
of the excited states, however, increases the likelihood that
collisional processes will quench the excitation prior to escape,
thereby reducing the net number of photons escaping the
plasma. Second-order effects resulting from the lengthened
lifetime of the resonance level include changes in the ionization
balance (due to multistep ionization from the excited state) and
the electron temperature. (For plasmas with non-Maxwellian
electron energy distributions, the electron temperature Te =
(2/3)ε, where ε is the mean electron energy.) Quantifying
and perhaps controlling radiation trapping is, therefore, an
important design consideration for improving the efficiency
of these lamps.

Radiation trapping was first theoretically addressed using
a modified form of diffusive transport for the excited states [4].
The method works reasonably well for discharges having
low absorber densities where the photon transport has a long
mean free path. This method was improved by Holstein and
Biberman [5, 6], who accounted for non-local transport of
photons and dependence on the lineshape function. Using
the Holstein method, the Einstein A-coefficient is decreased
(and the lifetime increased) by a geometry dependent factor to
account for the absorption and re-emission steps. Analytical
expressions for simple geometries are available [7, 8]. The
spatial distribution of emitters must be fairly simple to enable
the integration of the resulting Green’s function for transport
of photons. Inherent to this method is the full spectral
redistribution of radiation upon re-emission. That is, the
frequency of the emitted photon within the lineshape function
is independent of the absorption frequency. In cases where
there are complex geometries or distributions of radiators and
absorbers, one must resort to numerical methods to solve for
the decay rates and trapping factors.

Monte Carlo methods, first popularized by Anderson
et al [9], are well suited to addressing radiation transport
where the spatial distributions of absorbers and radiators are
complex or change in time, or partial frequency redistribution
(PFR) may be important [10–12]. In simple geometries, the
distributions for the ground and excited state densities can be
estimated or parametrized. In this regard, Lawler and Curry
[13] have developed semi-empirical expressions for radiation
trapping factors in cylindrical geometries using Monte Carlo
and propagator function techniques for fundamental mode
distributions and radially symmetric inhomogeneities. They
found that the trapped lifetimes of the resonance radiation of
Hg in Ar/Hg plasmas, as measured outside the plasmas, are not
significantly affected by moderate inhomogeneities in absorber
densities, though the excited atom distributions are [12]. They
also investigated the transport of photons produced by the
185 nm transition [14] and the consequences of foreign gas
broadening [15].

In more dynamic systems, a self-consistent plasma model
that accounts for the evolution of gas densities, temperatures
and other plasma parameters may be necessary. The need
for such coupled models has been recently addressed by
Lee and Verboncoeur [16, 17], who developed a radiation
transport model coupled to a particle-in-cell simulation, and
have applied it to a one-dimensional planar Ar discharge.
Their results agree well with Holstein eigenmode analyses for
radiation trapping factors.

To address the coupling of radiation transport with
plasma kinetics in two dimensions, the Monte Carlo radiation
transport module (MCRTM) was developed and interfaced
with the Hybrid Plasma Equipment Model (HPEM) [18].
The integrated model is capable of addressing lamps having
complex geometries in which the densities of radiators and
absorbers are not only non-uniform but highly dependent on
the shape of the lamp through processes such as cataphoresis.
The combined model was applied to analyses of Hg/Ar lamps
having geometries similar to those commercially available
(Philips QL and Matsushita Everlight). We found that coupling
of the plasma kinetics to the MCRTM led to significant
spatial variations in densities and temperatures of photon
radiating and absorbing species. In selected cases, these spatial
inhomogeneities had measurable effects on radiation trapping.
The models used in this investigation are described in section 2
and our results are discussed in section 3. Our concluding
remarks are in section 4.

2. Description of the models

The MCRTM tracks a quantum of energy emitted by plasma
excited species as the photon is absorbed and re-emitted while
traversing the plasma. As the probability for absorption and
re-emission depends on local densities of the absorbing and
emitting species, the densities of quenching and lineshape
perturbing species, and the gas temperature, the MCRTM
was interfaced to the HPEM, which provides these quantities.
In turn, the MCRTM provides the effective lifetime of emitting
excited states for use in the plasma kinetics routines of the
HPEM. The HPEM has been described in detail in previous
publications, and so will be only briefly discussed here [18].

The HPEM is a two-dimensional modular simulator
having three main modules: the electromagnetics module
(EMM), the electron energy transport module (EETM), and
the fluid kinetics module (FKM). The rf electromagnetic fields
and phases are calculated in the EMM module. These fields are
then used in the EETM to obtain electron transport coefficients
and electron impact source functions. These parameters are
then used in the FKM where momentum, continuity, and
energy equations are solved for all heavy particles. A drift
diffusion formulation for electrons is used to enable an implicit
solution of Poisson’s equation. The species densities, fluxes
and temperatures, and electrostatic fields are then returned to
the EMM and EETM modules. Many iterations through the
modules are executed until a converged solution is obtained.

The MCRTM directly interfaces with the FKM following
its execution during each iteration through the HPEM. The
MCRTM receives species densities, gas temperatures, and
rate constants from the FKM. With these parameters the
frequencies for perturbing and quenching collisions affecting
the species participating in radiative transfer reactions are
calculated. Using the algorithms described further, the
MCRTM produces radiation trapping factors that modify
the lifetime of radiating species, which are then used in
formulating rate equations during the next execution of the
FKM. The algorithms used in the MCRTM are similar to
those used by Sommerer [10]. Pseudoparticles representing
photons are tracked from their site of emission through multiple
absorptions and re-emissions until their escape from the plasma
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or until the quantum of energy is quenched. Although
reflection from surfaces can be accounted for, we assumed that
all surfaces are absorbing or transmitting and so any photon
that strikes a surface is lost from the plasma.

Although radiation transport is accounted for in the
MCRTM, the photon absorption sources resulting from that
transport are not explicitly included in the rate equations for
plasma species. Instead, the lifetimes of the radiating species
are adjusted consistent with the calculated radiation trapping
factors. We have performed test calculations where these
photon absorption terms are included in the rate equations for
plasma species while keeping their natural lifetimes. Over
the range of parameter space of interest to this study, the
resulting distributions of radiative species are not significantly
different. In a forthcoming publication, this latter technique
will be discussed and the specific operating conditions that
require the more rigorous approach will be described.

Pseudoparticles are emitted from sites randomly dis-
tributed within a numerical mesh cell in proportion to the
density of radiators in that cell (obtained from the FKM). As
the densities of radiators may vary by orders of magnitude over
the plasma region, the number of pseudoparticles released from
each cell i is re-scaled to ensure that a statistically relevant
number of pseudoparticles is emitted from every cell

ni = nmin + (nmax − nmin)
log N∗

i − log N∗
min

log N∗
max − log N∗

min

(1)

where ni is the number of pseudoparticles emitted from cell i,
and nmin and nmax are the pre-selected minimum and maximum
number of pseudoparticles permitted to be emitted and N∗

i is
the density of the radiating species in cell i. N∗

min and N∗
max

are the minimum and maximum densities of N∗ in the plasma.
These values are dynamically determined during execution of
the model. A weighting wi is assigned to each pseudoparticle
for the purposes of collecting statistics. For a pseudoparticle
emitted from cell i,

wi =
∏
m

wm,i (2)

where wm is a series of subweightings. The first such
subweighting is

w1,i = N∗
i �V i

ni

(3)

where �Vi is the volume of cell i.
The frequency of the photon is then selected from

the lineshape function g(ν), which is the probability of a
photon being emitted at a frequency ν [19]. The likelihood
of the photon being emitted near the line centre can be
hundreds to thousands of times higher than that for being
emitted in the far wings of the lineshape. The majority
of photons escaping the plasma usually originate from the
wings of the lineshape, where absorption probabilities are
smaller. Selecting pseudoparticles with probabilities directly
proportional to g(ν) would, in the absence of using a very
large number of pseudoparticles, undersample the wings of the
lineshape. For example, at the line centre, the mean free path
for the absorption of 254 nm resonance radiation is as short as
100 µm. Photons having mean free paths sufficiently long to
escape the lamp (many mm to 1 cm) have g(ν)/g(ν0) < 0.001.

Statistically, this means that the number of photons emitted in
the wings of the profile would require many tens-of-thousands
of pseudoparticles per numerical cell; there are many thousand
such cells in a typical two-dimensional mesh.

Although the assignment of frequency directly propor-
tional to g(ν) is the least ambiguous method, the need to avoid
sampling problems in two dimensions and the desire to obtain
frequency resolution throughout the mesh motivates one to try
another method. To avoid statistical under-sampling in the
wings of the lineshape profile using a reasonable number of
particles, we instead uniformly distribute the pseudoparticles
over a pre-selected range of frequencies about the line centre
ν0, and use an additional weighting factor w2 = g(ν) to
account for the likelihood of emission at a given frequency.
This method is essentially equivalent to directly sampling
the lineshape while reducing computer time. The centre of the
lineshape may be statistically under-sampled but since these
photons are absorbed and re-emitted many times, this statistical
error is minimal.

The lineshape is a Voigt profile, which combines the
features of Doppler and Lorentzian broadening and is
applicable at the temperatures and pressures of interest to us.
This lineshape is given by

g(ν ′) = γ

π3/2

∫ ∞

−∞

e−y2

γ 2 + (ν ′ − y)2
dy,

γ = νH

4π�νD
, ν ′ = ν − ν0

�νD
(4)

where νH is the homogeneous Lorentzian damping frequency,
�νD is the Doppler width, and ν ′ is the frequency departure
from ν0 in units of Doppler width. For our conditions,

νH = A +
∑

j

2νj (5)

where A is the Einstein coefficient for spontaneous emission
and νj is the frequency for broadening collisions by the
j th species. As νj depends on the local densities and
temperatures of collision partners and ν ′ depends on the local
gas temperature through �νD, g(ν ′) is then also a function of
position. Rather than recompute g(ν ′) at every mesh point,
g(ν ′) was pre-computed at the beginning of each iteration of
the MCRTM and stored as a two-dimensional array with γ

and ν ′ as interpolation parameters. We estimate the range
of ν ′ to construct the look-up tables based on estimates of
densities and temperatures from previous cases. Typical ranges
are −5 � ν ′ � 5. Given the array g(γ, ν ′), the actual
value of the Voigt profile at any spatial point is found by
simple interpolation using the local values of γ and ν ′. For
investigations of systems with multiple isotopes or radiating
species, g(γ, ν ′) is pre-computed as a three-dimensional array
with the third index corresponding to a given species.

Given the randomly chosen initial frequency, the polar and
azimuthal angles for emission are randomly chosen assuming
an isotropic distribution. A running tally of the residence
time of the pseudoparticle in the plasma is initialized as
τT = −(wi/A) ln(r), where r is a random number distributed
on (0,1). The photon transport is then tracked until its
next absorption by stepping through the mesh. As the
geometry of the lamp is, in principle, arbitrary, the stepping
method is required to account for striking physical objects
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(e.g. protruding electrodes). Although view factors and
a Green’s function could, in principle, substitute for the
spatial integration, the trade-offs between computer storage
requirements and computing time to derive the Green’s
function were not favourable.

The null collision method was employed for photon
transport. The photon path at frequency ν is advanced a
distance λ = λmin(ν) ln(r), where λmin(ν) is the minimum
mean free path for absorption at frequency ν based on densities,
temperatures and cross-sections throughout the mesh

λmin(ν) = 1

max(
∑

j Njσj (ν))
, σj (ν) = Ajc

2g(ν)

8πν2
(6)

where the max function samples all locations in the mesh
and the sum is over absorbing species having density Nj ,
absorption cross-section σj (ν), and Einstein coefficient Aj .
After advancing the trajectory a distance λ to location �r , the
probability of a real absorption is determined by comparing

r <

∑
j Nj (�r)σj (�r, ν)

max(
∑

j Njσj (ν))
(7)

where r is a random number distributed (0,1). If the inequality
is satisfied, the absorption occurs. If not, another test
absorption length is chosen and the photon is advanced without
change in direction. The identity of the absorbing species k is
determined from

δk−1 < r < δk, δk =
∑k

j=1 Nj(�r)σj (�r, ν)∑n
j=1 Nj(�r)σj (�r, ν)

(8)

where n is the total number of absorbing species. If the
absorbing species is non-emitting, the pseudoparticle is
removed from the simulation. Otherwise, the photon is
re-emitted if not quenched.

At sufficiently large pressures or plasma densities, or
statistically long lifetimes, quanta of energy may be quenched
by collisions prior to re-emission. The likelihood of this
occurring is determined by

r >
A′

A′ +
∑

j νj

(�r), A′ = A ln(r) (9)

where νj is the frequency of the j th quenching collision. If the
inequality holds, the excited state was deemed to have been
quenched prior to emission, and the quantum of energy is
removed from the simulation. For non-quenched quanta, τT

is incremented as τT → τT − (wij /A) ln(r), and the photon is
re-emitted at a frequency determined by PFR.

Table 1. Comparison of trapping factors obtained by MCRTM, Lister, and the Holstein formulation (in the Doppler broadened regime) for
the 254 nm linea.

R0 (cm) [Hg]b (cm−3) [Ar] (cm−3) Tave (K) kLister kMCRTM kHolstein

0.80 0.28 × 1014 1.6 × 1017 373 14.2 14.3 19.0
1.27 0.28 × 1014 1.3 × 1017 373 22.3 23.1 32.2
1.91 0.38 × 1014 8.0 × 1016 313 47.8 48.8 80.4
2.50 0.38 × 1014 9.6 × 1015 313 100.4 104.3 109.1

a Lister, private communication using the method described in [14, 15].
b Hg density per isotope. Total Hg density is 5 times larger.

The trapping factor as viewed from outside the lamp is
defined as

K =
∑

m τTm∑
m wm

A, (10)

where the sum is over all escaping photons. For purposes of
extension of the lifetime of the excited state, the sum is over
all emitted photons. The effective radiative lifetime of the
radiating state is then A/K for the next iteration for the HPEM.

The Holstein–Biberman model [5] assumes complete
frequency redistribution, that is the frequency and velocity
of the emitted photon is uncorrelated to that of the absorbed
photon. As such, the frequency for pressure broadening
collisions should be commensurate with or larger than the rate
of radiative relaxation. PFR assumes that there is a correlation
between the absorbed and emitted wavelengths. In the limit of
there being no momentum changing collisions, the absorption
and emission frequencies should be the same, or at best
differ by the natural linewidth. We addressed PFR using two
methods. In the first method, photons absorbed at frequency ν,
are randomly re-emitted in the frequency range ν ± �ν. The
value of �ν was found by determining the trapping factor of
the 254 nm transition of Hg in a cylinder of radius R0 with
a uniform density of Hg and Ar, and comparing with a more
exhaustive formalism for PFR [20]. The calibration in this
manner yielded �ν = α�νD, 1.75 < α < 2.0. A comparison
of the trapping factors so derived and those obtained by Lister
[20] for standard fluorescent lamps are shown in table 1. The
computed results are also benchmarked against those obtained
using the Holstein’s method for similar geometries assuming
a predominantly Doppler broadened mechanism [20]. The
results of Lister use the semi-analytic theory of Menningen
and Lawler [14] and Lawler et al [15]. In general, the
agreement is good.

We also used a more exact formalism for PFR, which
is similar to the Jefferies–White approximation [3, 21]. The
core of the lineshape is determined by Doppler broadening,
while the wings are determined by Lorentzian broadening.
The analytic form of the redistribution function is difficult to
integrate into a Holstein formulation and so approximations
are required. The redistribution function is, therefore, split
into a completely coherent and a completely redistributed
part. Pure Doppler broadening corresponds to a complete
coherence in the rest frame of the atom, but due to the
direction of re-emission being random, the absorbed and
re-emitted frequencies are uncorrelated in the laboratory rest
frame. Thus, pure Doppler broadening corresponds to CFR.
We modelled the Doppler core using CFR, and the wings
using PFR. To model PFR in the wings for absorption at
ν, we redistribute the emission frequency randomly within
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one Doppler width of ν. By using the analytic form of the
redistribution function, the approximate core cut-off frequency
is pre-calculated based on the solution of the equation [21]

exp(−x2
v ) = γ

x2
v

√
π

(11)

where xv is the departure from the line centre in units of �νD.
A lamp may have many radiating species, each having its

own spectral distributions for absorption and emission, such
as the 254 and 185 nm resonance transitions. In the event
these distributions overlap, they may interfere or contribute to
radiation transport from another species. This is particularly
the case for isotopes whose line centre frequencies are closely
spaced. In our model we treated isotopes as separate species to
account for, e.g. energy exchanging collisions. For example,
when a photon is deemed to have been absorbed, we checked
to determine which of the isotopes of the particle is absorbed
by using equation (8).

Hyperfine splitting (hfs) of an isotope results in subclasses
of the species having a different ν0, collision frequency and
concentration, which leads to different lineshapes for each hfs
component. In the same manner as isotopes, we consider
each hyperfine component as a separate radiating species.
Foreign gas collisions are known to redistribute the excitation
on hfs components of odd isotopes [14]. As such, if the
quantum was absorbed by an even isotope, it was re-emitted
by the same isotope. If the quantum was absorbed by an
odd isotope, the likelihood of a collision redistributing the
excitation among hfs components was computed using cross-
sections from Sommerer [10]. Based on the choice of a
random number, if the collision is deemed to have occurred,
the excitation is redistributed.

The reaction mechanism for Ar/Hg plasmas is summarized
in table 2. The electron impact cross-sections for Hg were
taken from Rockwood [22], Kenty [23] and Vriens and Smeets
[24]. The heavy-body cross-sections (excitation transfer,
quenching) were taken from Sommerer [10]. The values for the
cross-section for resonance broadening between Hg species is
3×10−14 cm2 and that for Ar–Hg broadening is 7×10−15 cm2.

Table 2. Reaction mechanism for Ar/Hg plasmas.

Rate
Reaction coefficienta Ref.

e + Ar → Ar + e b [25]
e + Ar → Ar(4s) + e b [26]
e + Ar → Ar+ + e + e b [27]
e + Ar(4s) → Ar + e b [26]c

e + Ar(4s) → Ar+ + e + e b [28]d

e + Hg(6 1S0) → Hg(6 1S0) + e b [22]
e + Hg(6 1S0) → Hg(6 3P0) + e b [22]
e + Hg(6 1S0) → Hg(6 3P1) + e b [22]
e + Hg(6 1S0) → Hg(6 3P2) + e b [22]
e + Hg(6 1S0) → Hg(6 1P1) + e b [22]
e + Hg(6 1S0) → Hg(6 3DJ, 7 3S1) + e b [22]
e + Hg(6 1S0) → Hg+ + e + e b [22]
e + Hg(6 3P0) → Hg(6 3P0) + e b [22]
e + Hg(6 3P0) → Hg(6 1S0) + e b [23]c

e + Hg(6 3P0) → Hg(6 3P1) + e b [23]c

e + Hg(6 3P0) → Hg(6 3P2) + e b [22]
e + Hg(6 3P0) → Hg(6 1P1) + e b [23]

Table 2. (Continued.)

Rate
Reaction coefficienta Ref.

e + Hg(6 3P0) → Hg(6 3DJ) + e b [23]
e + Hg(6 3P0) → Hg(7 3S1) + e b [23]
e + Hg(6 3P0) → Hg+ + e + e b [24]
e + Hg(6 3P1) → Hg(6 3P1) + e b [22]
e + Hg(6 3P1) → Hg(6 1S0) + e b [23]c

e + Hg(6 3P1) → Hg(6 3P0) + e b [23]c

e + Hg(6 3P1) → Hg(6 3P2) + e b [22]
e + Hg(6 3P1) → Hg(6 1P1) + e b [23]
e + Hg(6 3P1) → Hg(6 3DJ) + e b [23]
e + Hg(6 3P1) → Hg(7 3S1) + e b [23]
e + Hg(6 3P1) → Hg+ + e + e b [24]
e + Hg(6 3P2) → Hg(6 3P2) + e b [22]
e + Hg(6 3P2) → Hg(6 1S0) + e b [23]c

e + Hg(6 3P2) → Hg(6 3P0) + e b [23]c

e + Hg(6 3P2) → Hg(6 3P1) + e b [23]c

e + Hg(6 3P2) → Hg(6 1P1) + e b [23]c

e + Hg(6 3P2) → Hg(6 3DJ) + e b [23]
e + Hg(6 3P2) → Hg(7 3S1) + e b [23]
e + Hg(6 3P2) → Hg+ + e + e b [23]
e + Hg(6 1P1) → Hg(6 1P1) + e b [22]
e + Hg(6 1P1) → Hg(6 1S0) + e b [22]c

e + Hg(6 1P1) → Hg(6 3P0) + e b [22]c

e + Hg(6 1P1) → Hg(6 3P1) + e b [22]c

e + Hg(6 1P1) → Hg(6 3P2) + e b [22]c

e + Hg(6 1P1) → Hg+ + e + e b [24]
e + Hg(6 3DJ) → Hg(6 3DJ) + e b [22]
e + Hg(6 3DJ) → Hg(6 1S0) + e b [22]c

e + Hg(6 3DJ) → Hg(6 3P0) + e b [22]c

e + Hg(6 3DJ) → Hg(6 3P1) + e b [22]c

e + Hg(6 3DJ) → Hg(6 3P2) + e b [22]c

e + Hg(6 3DJ) → Hg+ + e + e b [24]
e + Hg(7 3S1) → Hg(7 3S1) + e b [22]
e + Hg(7 3S1) → Hg(6 1S0)+ e b [22]c

e + Hg(7 3S1) → Hg(6 3P0) + e b [22]c

e + Hg(7 3S1) → Hg(6 3P1) + e b [22]c

e + Hg(7 3S1) → Hg(6 3P2) + e b [22]c

e + Hg(7 3S1) → Hg+ + e + e b [24]
Ar(4s) + Ar(4s) → Ar+ + Ar + e 5.0 × 10−10 e

Ar(4s) + Hg(6 1S0) → Hg+ + Ar + e 9.0 × 10−10 [29]
Ar(4s) + Hg → Hg+ + Ar + e 9.0 × 10−10 [29]f

Hg∗ + Hg∗ → Hg+ + Hg(6 1S0) + e 3.5 × 10−10 [30]i

Ar+ + Hg(6 1S0) → Hg+ + Ar 1.5 × 10−11 [31]
Ar+ + Ar → Ar + Ar+ 4.6 × 10−10 [32]
Hg+ + Hg → Hg + Hg+ 1.0 × 10−9 f,g

Hg(6 3P1) → Hg(6 1S0) + hν 8.0 × 106 s−1 10h

Hg(6 1P1) → Hg(6 1S0) + hν 7.5 × 108 s−1 10h

Hg(7 3S1) → Hg(6 3P0) + hν 2.0 × 107 s−1 [33]
Hg(7 3S1) → Hg(6 3P1) + hν 6.0 × 107 s−1 [33]
Hg(7 3S1) → Hg(6 3P2) + hν 5.0 × 107 s−1 [33]
Hg(6 3DJ) → Hg(6 3P0) + hν 2.2 × 107 s−1 [33]
Hg(6 3DJ) → Hg(6 3P1) + hν 6.6 × 107 s−1 [33]
Hg(6 3DJ) → Hg(6 3P2) + hν 2.0 × 107 s−1 [33]

a Rate coefficients have units of (cm3 s−1) unless noted
otherwise.
b Rate coefficients are calculated in the EETM using
cross-sections from the indicated references.
c Cross-section obtained by detailed balance.
d By analogy with potassium.
e Estimated as a gas phase kinetic rate constant.
f Hg here represents all states.
g Estimated.
h Untrapped value which is modified by the MCRTM.
i Hg∗ refers to each of the states 6 3P0, 6 3P1, 6 3P2, 6 1P1,
6 3DJ, and 7 3S1.
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Figure 1. Lamp geometry and plasma properties for the base case
conditions (Ar 500 mTorr, Hg 5 mTorr, 55 W). (a) Schematic of the
lamp, (b) power deposition, (c) electron temperature and
(d) electron density. Even though the skin depth exceeds the
dimensions of the lamp, power deposition peaks at inner radii due to
geometrical considerations. Contour labels are in units shown at the
top of each figure.

Table 3. Base case operating conditions.

Ar fill pressure 500 mTorr
Hg vapour pressure 5 mTorr
Cold spot temperature 310 K
RF frequency 5 MHz
Power deposition 55 W

3. Radiation transport in electrodeless lamps

The geometry for the base case is shown in figure 1. This lamp
is similar in shape to the Philips QL lamp [34]. The rf coils
are wrapped around a central ferrite core. The plasma volume
has a re-entrant cavity surrounding the coil. The base case
operating conditions are listed in table 3. The skin depth for
these conditions is ≈30 cm. The electric field is a maximum
near the coils, primarily for geometrical reasons as opposed to
a short absorption length. As a result, the largest specific power
deposition is near the re-entrant coil, as shown in figure 1.

The electron temperature Te and density ne are also shown
in figure 1. Te has a maximum value of ≈2 eV near the
coil. For these conditions, the electron mean free path is
≈10−2 cm, much less than the skin depth, and the electron
collision frequency is ≈1 × 109 s−1, much larger than the
rf frequency. Power deposition is, therefore, dominantly
collisional. The electron density peaks at ≈2 × 1012 cm−3

in an annulus around the antenna. The gas mixture is not
attaching and recombination in the bulk plasma is negligible.
As a result, the dominant charged particle loss is by diffusion.
The lower ionization threshold of Hg and multistep ionization
from Hg(6P) produces far more rapid ionization than Ar. Any
excited states or ions of Ar are rapidly quenched by Penning
ionization (τ ≈ 25 µs) and charge exchange (τ ≈ 400 µs).

Ground and excited state densities of Hg are shown
in figure 2. The Hg ground state density [Hg(6 1S0)] is
significantly depleted in the central region of the plasma due to
cataphoresis. The ambipolar radial ion flux (see figure 2(d)) to
the walls at the mid-height of the antenna is ≈1017 cm2 s−1

and the momentum transfer cross-section to Hg(6 1S0) is
≈10−15 cm2, producing a rate of momentum transfer of
≈102 s−1, which is rapid compared to the rate of thermal
diffusion. The Hg(6 1S0) is, therefore, depleted in the central
part of the lamp, an effect that is exacerbated by a gas
temperature rise with respect to the walls of ≈40 K. Ions
recombining on the surfaces provide a source of ground state
neutrals at the wall. The end result is that the Hg(6 1S0) density
is maximum near the walls.

The production of Hg(6 3P1), the upper state of the 254 nm
transition, is dominated by electron impact from the ground
state. The quenching of Hg(6 3P1) is dominated by super-
elastic electron collisions (τ ≈ 1 ms), and radiative relaxation,
both of which have rates that are large compared to transport.
The density of Hg(6 3P1), therefore, peaks where the excitation
rates are largest, which in this case is near the walls at the height
of the antenna where the electron mean energy and Hg(6 1S0)
are largest. The Hg(6 1P1) density (upper state of the 185 nm
transition) also peaks near the antenna. The untrapped (1.3 ns)
radiative lifetime of the Hg(6 1P1) state is small compared
to the untrapped lifetime of the Hg(6 3P1) (125 ns). As a
result, spreading by diffusion of the Hg(6 1P1) density from
its peak has a smaller extent than does the Hg(6 3P1) density,
but otherwise the spatial distributions of the two emitting states
have the same functional dependences. As a result, we shall
only be showing the Hg(6 3P1) profile as an indication of
emitter densities.

Radiation trapping factors were investigated for the 185
and 254 nm transitions while varying the cold spot temperature
Tc, which controls the vapour pressure of Hg. As the lamps
are sealed, an increase in Tc increases the Hg density while
the Ar density remains the same. As such, with increasing
Tc the rate of collisional broadening remains nearly constant
with a small increase due to the increase in thermal speed.
When keeping the power constant, the density of emitters
(excited states) is approximately constant. The end result
is that the trapping factors increase with Tc, as shown in
figure 3. The trapping factors for both the 185 and 254 nm
transitions change by nearly the same percentage, and this
is to be expected because the spatial profiles of the radiators
and absorbers for both the transitions are nearly the same. At
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Figure 2. Plasma properties for the base case conditions.
(a) [Hg(6 1S0)], (b) [Hg(6 3P1)], (c) [Hg(6 1P1)] and (d) flux vectors
for Hg+. The flux vectors show direction only and not magnitude.
Cataphoresis and temperature rise decrease the density of ground
state Hg. Contour labels are in units shown at the top of each figure.

the largest Hg densities, the total trapped lifetimes (Kτ ) of
the 185 and 254 nm transitions are approximately the same
(2.9 µs). Note that at high Hg densities and when resonance
broadening dominates, the trapping factor for the 185 nm
transition will saturate [14]. The precise value of cold spot
temperature at which this saturation occurs depends on the
rate of foreign gas broadening and geometry. When extending
our calculations to higher temperatures, we obtain saturation
in the trapping factor for the 185 nm transition at Tc ≈ 360 K
([Hg] = 4 × 1015 cm−3).

The trapping factor for the 185 nm line is about 100
times larger than the trapping factor for the 254 nm line,
which suggests an inverse scaling of the trapping factor
with vacuum radiative lifetime. The Holstein theory for
a cylindrical discharge states that the trapping factor for a

Figure 3. Trapping factors as a function of cold spot temperature
for the (a) 254 nm and (b) 185 nm transition. Increasing absorber
density increases radiation trapping factors.

Doppler broadened line scales as

K = α(π ln α)1/2

1.6
, α = Rλ3

0Ng2A

8π3/2g1Vt
(12)

where Vt = (2kT /M)1/2, λ0 is the wavelength at the line
centre, g1 and g2 are the statistical degeneracies for the upper
and lower energy levels, and R is the radius of the cylindrical
discharge. So, for similar absorber densities, trapping factors
should scale almost inversely with the vacuum radiative
lifetime, which we observe here. The non-linearities in the
scaling of K/[Hg] probably result from the complex non-
cylindrical geometry of the lamp and the fact that the densities
of absorbers and emitters are not uniform. Using the Holstein
formulation for a Doppler-broadened lineshape in a cylindrical
geometry with radius 2.5 cm (Hg = 5 mTorr, Ar = 500 mTorr,
T = 310 K), the trapping factor for the 254 nm transition
should be ≈15. The lower trapping factor obtained from the
MCRTM is a consequence of the non-cylindrical geometry and
the highly non-uniform distribution of radiators and absorbers.
Due to the re-entrant antenna, radiation transport in the middle
of the lamp is probably better addressed analytically as a slab
of thickness ≈2 cm. When using the Holstein formulation
for these conditions, the trapping factor is ≈10. Considering
that the radiators have a maximum density displaced <1 cm
from the wall where the absorber density has a minimum,
the trapping factor implied using the slab analogy could be
as small as 4.
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Figure 4. Spectra averaged over photons escaping from the lamp for
cold spot temperatures of 293 and 323 K for the (a) 254 nm and
(b) 185 nm transitions. The 185 nm line reversal is more sensitive to
the increase in absorber density.

The spectra for the 254 and 185 nm transitions, averaged
over all photons escaping the lamp, are shown for cold spot
temperatures of 293 and 323 K (Hg densities of ≈3.5 ×
1013 cm−3 and ≈3.5×1014 cm−3, respectively) in figure 4. The
dip in the centre of the lineshape is due to the more frequent
absorption of photons which, with PFR, may be re-emitted
in the wings of the lineshape where the mean free path for
absorption is longer and so the likelihood for escape from
plasma is greater.

The choice of rf frequency for exciting the plasma is an
important design consideration with respect to the efficiency
of power transfer. Radiation transport ultimately depends on
the spatial distribution of radiators and absorbers, which is
determined by the spatial distribution of power deposition. To
investigate whether the rf frequency should be a consideration
with respect to radiation transport, the frequency was varied
while keeping the other parameters constant. The resulting
trapping factors for the 254 and 185 nm lines are shown in
figure 5. The trapping factors have only small variations
with the rf frequency, mostly within the limits of statistical
error of the method. At our operating conditions of hundreds
of mTorr, the plasma is collisional, and the electron–neutral
momentum transfer frequency νm is greater than the plasma
frequency ωpe near the boundary. In this case, the skin depth
is given by

δc =
(

2

ωµ0σdc

)1/2

, σdc = e2ne

mνm
(13)

Figure 5. Trapping factors as a function of rf source frequency for
the (a) 254 nm and (b) 185 nm transitions for the base case
conditions. No systematic variations in trapping factor with
rf frequency were observed.

For our lamp, the maximum electron density for the base case
operating conditions is 2×1012 cm−3. The minimum collision
frequency is 1.5 × 107 s−1, which gives a minimum possible
skin depth of approximately 30 cm, which is much larger than
the size of the lamp. Frequencies in the GHz regime would be
required to perturb the spatial distribution of radiators. As a
result, radiation transport is little affected by the rf frequency.

Although there are many constraints and trade-offs in lamp
design, radiation transport is one important consideration.
In this regard, we compared a geometry similar to the Everlight
lamp geometry [1] with that of the QL lamp. The Everlight
lamp has its coils in an external solenoidal configuration.
For purposes of this study, we chose the radius and height
of the lamps to be the same. Without a re-entrant void for
the central post, the volume of the Everlight lamp is larger.
Plasma parameters (power, electron density, [Hg(6 1S0)] and
[Hg(6 3P1)]) for the Everlight lamp are shown in figure 6 for the
base case conditions. Power deposition peaks at ≈2.6 W cm−3,
which is smaller compared to the QL lamp because the same
power (55 W) is deposited into a larger overall volume. Since
the peak electric fields are at the outer radii for the Everlight
lamp and inner radii for the QL lamp, the incremental volumes
for peak power deposition are also larger. The electron
density has a similar peak value as the QL lamp though the
maximum is displaced to a larger radius. As such, the ion
flux producing cataphoresis, which transports Hg(6 1S0) has
inward and outward components. The spatial distribution of
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Figure 6. Plasma parameters for the Everlight geometry for
the base case conditions (Ar 500 mTorr, Hg 5 mTorr, 55 W).
(a) Power deposition, (b) electron density, (c) [Hg(6 1S0)] and
(d) [Hg(6 3P1)]. The change in coil location changes the distribution
of radiators and absorbers. Contour labels are in units shown at the
top of each figure.

Hg(6 3P1), though still highly peaked towards the coils, is more
uniformly distributed through the volume of the lamp.

Trapping factors for the 254 and 185 nm transitions for
the QL and Everlight geometries, obtained while varying the
Ar fill pressure and the cold spot temperature are shown in
table 3. All other parameters were kept at their base case
values. The general trends are that trapping factors decrease
with increasing Ar fill pressure and increase with increasing
Hg partial pressure. The decrease in trapping with fill pressure
results from the increasing Ar collision frequency, which
redistributes quanta to the wings of the lineshape, thereby
increasing the likelihood for escape. An increase in trapping
factor with increasing [Hg] is due to the larger absorber density.
The increase in trapping factor did not directly scale with
the increase in Hg vapour density. The trapping factors
for the QL geometry are systematically smaller than for the
Everlight geometry by 5–15%. We attribute these scalings

Table 4. Trapping factors for QL and Everlight geometries
(55 W, 5 MHz).

Trapping factor K
Lamp
geometry

Hg vapour
pressure
(mTorr)

Ar fill
pressure
(mTorr) 254 nm 185 nm

Everlight 5 100 2.52 220
Everlight 5 500 2.10 203
Everlight 20 100 10.87 1038
Everlight 20 500 10.02 946
QL 5 100 2.46 212
QL 5 500 2.03 194
QL 20 100 9.84 886
QL 20 500 9.03 848

Figure 7. Densities of Hg(6 1S0), Hg(6 3P1) and Hg+ for the (a) QL
and (b) Everlight geometries for 100 mTorr Ar fill pressure, and
5 mTorr Hg(310 K cold spot). Contour labels are in units shown at
the top of each figure.

to the non-uniform distributions of radiators and absorbers
(table 4).

For example, the Hg ground and excited state densities
for the two lamps with an Ar fill pressure of 100 mTorr, and
Hg partial pressure of 5 mTorr (Tc = 310 K) are shown in
figure 7, and for a Hg pressure of 20 mTorr (Tc = 330 K) in
figure 8. The spatial distributions of the Hg ground state are
significantly different between the 5 and 20 mTorr cases. These
differences are due in part to the more collisional conditions
for electrons with the higher Hg pressure, producing shorter
mean free paths for energy dissipation. As a result, excitation
is confined closer to the high electric field regions near the
coils. The difference in ground state density is also in part due
to momentum transfer from ions. Owing to the increase in
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Figure 8. Densities of Hg(6 1S0), Hg(6 3P1) and Hg+ for the (a) QL
and (b) Everlight geometries for 100 mTorr Ar fill pressure, and
20 mTorr Hg(330 K cold spot). Contour labels are in units shown at
the top of each figure.

the Hg ground state density, there is more efficient momentum
transfer of Hg+ with the more numerous and same mass ground
state Hg compared to the lighter Ar. The rate of symmetric
charge exchange also increases, resulting in charge exchange
becoming the dominant momentum transfer process which
shifts the peak of the Hg ion density towards the walls, as
shown in figure 8. This relative shift in ionization peak is
more apparent in the Everlight lamp due to the larger distance
between the centre of the column and the walls. Due to the
shift in peak in ionization, the cataphoresis now occurs at a
different location in the lamp.

The peak densities of Hg(6 3P1) are shifted towards the
walls at higher Hg densities in both lamps. The end result is
that in the Everlight lamp geometry, regardless of where the
photons are emitted in the bulk, they experience a Hg absorber
density of around 6 × 1014 cm−3 between the sites of emission
and the walls. In contrast, most of the photons emitted in the
interior of the QL lamp traverse a depleted region of Hg in the
centre of the lamp, and only traverse high densities of absorbers
near the walls of the lamp. As a result, trapping factors for
the Everlight lamp are moderately higher than those for the
QL lamp.

Trapping factors as a function of power for the QL lamp
are shown in figure 9 for an Ar fill pressure of 500 mTorr and
Hg pressure of 5 mTorr. We found that the trapping factors
generally decrease with increasing power deposition. With
increasing power the depletion of Hg(6 1S0) in the centre of
the lamp by both thermal and cataphoretic processes increases,
producing larger ground state densities near the walls. As

Figure 9. Trapping factor as a function of power for the (a) 254 nm
and (b) 185 nm transitions, keeping the other parameters at the base
values. Increasing power increases the importance of electron
collision quenching and cataphoresis in redistributing absorbers.

a result the excited state densities are produced successively
closer to the walls with increasing power. Had this been a plane
parallel geometry, the proximity of the radiators to the walls
would probably have been offset by the larger column density
of Hg(6 1S0) near the walls resulting in little, if any change in
trapping factor. In these more complex geometries, the closer
proximity of radiators to the walls dominates the increased
column density, producing a smaller trapping factor. Increased
power also produces more electron collisional quenching.
Quanta which were originally emitted deep in the interior of the
lamp are less likely to escape the plasma. It is these photons
which most heavily contribute to the trapping factor, and so
their loss reduces the average residence time and decreases the
trapping factor.

To decouple cataphoresis and electron collisional
quenching from other parametric variations, investigations
were performed at low ICP powers. For example, trapping
factors as a function of Ar fill pressure are shown in figure 10 for
a power of 10 W, for which cataphoresis is not very important.
As such, the densities of excited states of Hg peak in the centre
of the lamp, and most quantum are emitted from that volume.
The trapping factors are found to be approximately constant
over the pressure range studied (50–1500 mTorr) and within the
statistical error of the method, a consequence of natural and
Doppler broadening dominating. From these and other studies,
we concluded that variations of trapping factors with power
and pressure over the design space can be largely attributed
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Figure 10. Trapping factor as a function of Ar fill pressure for 10 W
for the (a) 254 nm and (b) 185 nm transitions, keeping the other
parameters at the base values.

to redistribution of radiators resulting from cataphoresis and
secondarily due to electron quenching in the bulk of the plasma.

Previous studies have proposed that trapping factors can
be manipulated by changing the isotopic abundance of the
Hg atoms [35]. The ability to manipulate trapping factors
with the addition of, e.g. Hg-196 results from its central
frequency being sufficiently far away from the other isotopes
that a photon that is emitted by that isotope has a high
likelihood of escaping from the lamp. Ideally, quanta of
energy which are collisionally mixed between the isotopes and
which are preferentially channelled to the Hg-196 isotope are
rapidly radiated away. Some success in manipulating radiation
trapping factors with isotopic abundances has been achieved
for conventional high pressure linear lamps [35].

In this regard, exit spectra for the complete isotopic
structure of Hg with hfs are shown in figure 11 for an Ar fill
pressure of 500 mTorr, Tc = 310 K (Hg = 5 mTorr) and an
Ar fill pressure 1.5 Torr, Tc = 340 K (Hg = 40 mTorr). Other
operating parameters were kept at their base case values. The
spectrum at the lower fill pressure and cold spot shows ten
peaks due to self-trapping. The Hg-196 isotope is not visible in
the spectrum for these conditions due to its low abundance. The
isotopes of the Hg-199a, Hg-201a, and Hg-204 have small line
centre separations compared to their separations from other
isotopes. As a result, their combined lineshape appears as
the lineshape for a single isotope. The Hg-198 and Hg-201b

Figure 11. Exit spectra when including the complete isotopic
structure of Hg for 55 W. (a) 500 mTorr Ar fill pressure, cold spot
temperature of 310 K and (b) 1.5 Torr Ar fill pressure, cold spot of
340 K. At the lower pressure and temperature, there is little
collisional mixing between the isotopes.

isotopes, and the Hg-199b and Hg-201c isotopes also behave
similarly. The end result is the appearance of five ‘isotopes’.
At low Ar and Hg pressures typical of electrodeless lamps,
there is insufficient broadening and collisional mixing for there
to be a significant exchange of quanta between isotopes and
so we obtain non-overlapping spectra with line self-reversal.
As such, special isotopic mixtures to manipulate trapping
factors are not likely to be important at lower pressures of
electrodeless lamps. At the higher Ar and Hg densities typical
of conventional linear lamps which have greater collisional
broadening and mixing, the lineshapes overlap and there is
exchange of quanta between isotopes, as shown in figure 11(b).
We studied the effect of artificially increasing the Hg-196
concentration on the trapping factors. We found that for Hg-
196 concentrations varying from 0.15% (naturally occurring)
to 3.5%, there was no significant variation in the trapping
factors of any of the Hg isotopes. This is again due to our
low pressure operating conditions, for which there are not
enough collisional processes to randomize the exit channels of
photons.
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4. Concluding remarks

A Monte Carlo resonance radiation transport model has
been described which interfaces with a plasma equipment
model to evaluate radiation trapping in gas discharges having
complex geometries. Electrodeless inductively coupled
discharges were investigated under a variety of operating
conditions with different isotopic considerations. The scaling
laws which provide Holstein factors in simpler geometries are
not necessarily applicable in the case where radial cataphoresis
generates a non-uniform density profile of absorbers and
emitters. At typical operating conditions, the electromagnetic
skin depth is much larger than the size of the lamp and
so the frequency of rf excitation does not affect radiation
transport. Trapping factors decrease with an increase in
applied power due in large part to a redistribution of radiators
and absorbers. The shape of the plasma vessels affects the
radiation transport through cataphoresis. This effect increases
at higher temperatures where momentum transfer between Hg
ions and Hg neutrals is more efficient.

The methodology for obtaining radiation trapping factors
just described is computing intensive and requires resources far
exceeding those for more convenient analytic or semi-analytic
formations. The added computational burden of the radiation
transport calculation is, however, only a moderate fraction
of the total time required for the plasma hydrodynamics
calculation using our model. A legitimate issue is whether
the additional resources are justified. For geometries, and
spatial distributions of radiators and absorbers which are
readily captured in Green’s functions, analytic or semi-analytic
expressions for trapping factors are clearly the preferred
technique. As the complexity of the geometry increases or
the ability to analytically predict the distribution of radiators
and absorbers diminishes (due to, e.g. the consequences
of cataphoresis), the increased complexity of our approach
becomes justified for improvements by factors of 2–4 in
calculating radiation factors.
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