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Stimulated Brillouin scattering parasitics in large optical
windows
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The growth of optical radiation, scattered transverse to the pump axis by stimulated Brillouin scattering (SBS) in
optical windows, is considered. Basic equations are presented, and an analytic expression that determines the
parasitic buildup time is derived for a transverse SBS geometry. Losses suffered by the scattered optical radiation
are included in a bulk-loss term. Calculations are performed for fused-silica windows and compared with a
numerical model. This parasitic process may affect the design of laser systems that will generate multinanosecond,
multikilojoule, narrow-band pulses in the ultraviolet region.

Stimulated Brillouin scattering" 2 (SBS) is an allowed
nonlinear process in all media and has previously3

been associated with damage processes in mirrors and
windows. Scaling of UV excimer lasers for kilojoule,
short-pulse (10 nsec), narrow-band (<0.5 cm-') opera-
tion creates the potential for transverse SBS process-
es. The SBS-generated optical wave would be a para-
sitic wave that removes energy from the transmitted
wave and simultaneously generates an intense acous-
tic wave, which could fracture large windows.

The SBS process is a three-wave mixing process
involving two optical waves and an acoustic wave in
the SBS medium. A compressional acoustic wave cre-
ates an index grating that scatters energy from one
optical field to the other. The two optical fields form
a traveling standing-wave pattern with high and low
field intensity regions, which, in turn, drives the com-
pression and rarefaction of the acoustic wave. As with
all nonlinear mixing processes, energy and momentum
must be conserved.

Conservation of momentum requires that the wave
vectors for the three waves be coplanar; thus the
phase-matching diagram of Fig. 1 can be used. Since
the speed of light is many orders of magnitude larger
than typical sound-wave velocities, then to a high de-
gree of accuracy
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where cop, wS, and Wa are the radial frequency of the
pump, Stokes, and acoustical waves, respectively; 0 is
the angle between the pump and Stokes wave vectors;
Oa is the angle between the pump and acoustical wave
vectors; Va is the speed of sound in the SBS medium; n
is the optical index of refraction in the SBS medium;
and c is speed of light.

The pump and Stokes electric fields are defined by

the slowly varying envelopes P and S through the
relations

Es = (7r/c)l12S exp[i(wt - Kr)] + c.c.,

Ep = (7r/c)"'2P exp[i(wpt - Kpr)] + c.c.

*(2a)

(2b)

The intensities of the Stokes and pump fields are 1512/
2 and IP12/2, respectively. The equations of motion
for SBS can be derived from Maxwell's equations and
from the equations for continuous media, which in-
clude electrostrictive terms.2 Invoking the slowly
varying envelope approximation, the SBS equations
are given by
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where xp and x8 are coordinates in the direction of
propagation of the pump and Stokes waves, respec-
tively; T b is the intensity decay time of the acoustic
wave; go is the steady-state gain coefficient for the
Stokes wave; ap (as) is the background loss for the
pump (Stokes) intensity per unit time; and p is propor-
tional to the complex amplitude of the acoustic wave.
These equations are identical to those for liquids and
sufficiently dense gases.'
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Fig. 1. Phase-matching diagram for SBS showing the
pump, Stokes, and acoustic wave vectors.
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Fig. 2. Transverse SBS geometry. A uniform pump field
in time and space is normally incident upon a window. A
Stokes field propagating normal to the pump field builds up,
reflecting off the sides of the windows with reflection coeffi-
cient R, and eventually depletes the pump field.

The angularly dependent gain coefficient in an iso-
tropic or cubic solid for a monochromatic pump is
given by 5' 6

27rn 7 P12
2 1

-CpOXs
2

vaAb sin 0/2 (4)

where P12 is the elasto-optical coefficient, po is the
density of the solid, XA is the Stokes wavelength in
vacuum, and Avb is the FWHM linewidth of backscat-
tered Stokes fluorescence (0 = 180°). For backwave
SBS, sin 0/2 is 1, and the gain expression reduces to the
form given by Ippen. 6

The FWHM linewidth of the transverse Stokes
wave (Av) is a function of the acoustic frequency given
by

V (-) AVbO, (5)

where Wao is the frequency of the acoustic wave where
the backscattered linewidth Avbo was measured. The
pump wavelength and the scattering-angle depen-
dence of the acoustic frequency (Wa) are given in Eq.
(la). The decay time of the acoustic intensity is relat-
ed to the line width by

1/rb = 27riAv. (6)

Since the acoustic frequency is inversely proportional
to the optical wavelength, the frequency dependence
of the gain is determined solely by the wavelength
variation of the optical index of refraction. The re-
sponse time, however, varies as the square of the opti-
cal wavelength.

The gain for backwave SBS in fused-silica fibers has
been experimentally measured6 at 535.5 nm to be 4.3
cm/GW. This is within experimental error of the the-
oretical value6 of 5.8 cm/GW. The index of refraction
at 535 nm is 1.46, and at 248 nm it is 1.51. Including
the effect of the index of refraction on linewidth, the
theoretical gain for transverse SBS at 248 nm is 9.7
cm/GW. The frequency shift and response time7'8

(frb) for transverse SBS at 248 nm should be 4.9 GHz
and 0.52 nsec (Av = 0.3 GHz), respectively.

Consider the geometry in Fig. 2. The pump beam
has a temporally flat top, uniform in the transverse
dimensions, with an intensity Ipo. The leading edge of
the pump beam is normally incident upon a window at
time t = 0. Inside the window, a uniform Stokes wave
with an initial intensity of Iso is propagating at right
angles to the pump wave. If the loss seen by the

Stokes wave at the window edges is distributed into an
equivalent continuous loss coefficient (as), then the
initial conditions, the boundary conditions, and the
equations of motion become invariant under transla-
tion in the xs direction. Under these conditions, the
solution must also be invariant under the translation,
and the partial derivatives with respect to xs may be
dropped in Eq. (3).

The equations can be further simplified by consid-
ering only the growth of the Stokes wave in the unde-
pleted-pump regime, i.e., Ip = Ipo. In this case, Eq.
3(a) can be dropped and Eqs. 3(b) and 3(c) combined
to yield

[t 2 b 2 )at (4Trb 4rbnb ]
Assuming a solution of the form is Aest and substitut-
ing into Eq. (7) results in a second-order equation for
K, whose roots are

(1 ~ 2golc 1/ 1 + asrTb
K4- a~~~bJ -(8)

(4Tb) 4Tbn] 4%b

The root with the plus corresponds to exponential
growth of the Stokes electric field in the presence of a
strong pump field.

When the gain in the window exceeds the loss, the
transverse Stokes field will grow as a function of time.
If this Stokes field has sufficient gain and sufficient
interaction time, the Stokes wave will build up to a
point where it can deplete significant energy from the
pump radiation in the window. This causes the win-
dow to become opaque to additional pump radiation
until the acoustic and optical waves decay away. Fur-
thermore, the intense optical and acoustical fields may
cause optical or mechanical damage.3 A threshold for
this parasitic effect can be defined as the time re-
quired (T) for the Stokes power to reach a given frac-
tion (f) of the pump power. Assuming an initial uni-
form (noise) source for the Stokes field, the solution
for the Stokes intensity is exponential:

(9)

Using this form of the solution, the buildup time (7) is
given by

T (- 2In J) (10)

where I, is the noise intensity and t (w) is the window
thickness (width). Since significantly depleting the
pump field corresponds to violating the assumptions
that led to Eq. (8), f should be chosen to be 0.1 or less.

The major noise source for the SBS process is the
thermal phonon population. However, as only the
logarithm of the noise source intensity appears in Eq.
(10), no significant modification of the results is ex-
pected from using the quantum noise at the Stokes
frequency as the input noise source. The noise inten-
sity was calculated as 0.0024 W/cm 2 for fused-silica
windows pumped by KrF radiation. The acceptance
angle of the noise is set by the allowed angular devi-
ation before the SBS center frequency shifts more
than the acceptance bandwidth.

Assuming an intensity reflectivity at the window

Is (t) =_ I, (0) exp, (2K+t).
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Fig. 3. Comparison of analytic results with a numerical
model. Plotted is the buildup time (f = 0.1) to depletion
threshold versus the KrF pump intensity in a uniformly
filled fused-silica optical window. The first case is for a very
wide window or one with perfectly reflecting edges. The
second and third cases are for 40-cm- and 20-cm-wide win-
dows, respectively, with a reflectivity of 0.001 at their edges.
All curves assume a width-to-thickness ratio of 10.

edge of R, the distributed loss coefficient for the
Stokes wave is given by

a = - [c ln(R)]1(nw). (11)

This distributed loss coefficient should work well as
long as the Stokes light makes a few trips across the
window before threshold is reached or if the Stokes
loss at the window edge is small.

A multidimensional computer model was also used
to evaluate SBS parasitics in large-aperture windows.
The computer model exactly solves the set of coupled
partial differential equations [Eqs. (3)] as a function of
time on a two-dimensional spatial mesh. There are
five variables: the incident pump field, a pair of
Stokes fields, and a pair of acoustic fields. The two
Stokes waves propagate in opposite transverse direc-
tions to the pump wave, and there is a separate acous-
tic wave associated with each Stokes wave. The
length-to-width ratio of the window was set at 1:10,
and the edge reflectivity was varied.

The buildup time for f = 0.1 (10% depletion of the
transmitted pump intensity) as computed with the
analytic expression in Eq. (10) and with the exact
computer model is plotted in Fig. 3. The three cases
shown are for a very large window (or for a window
with an edge reflectivity of R = 1.0) and for windows
with widths 40 and 20 cm (R = 0.001). The agreement
between the analytic expression and the exact solution
is excellent, thereby validating the lumped-loss ana-
lytic model.

Figure 3 shows that very short pulses have high
thresholds because of the finite response time of fused
silica. It should be noted that this buildup time will
be longer for longer-wavelength optical pump waves.
Very long temporal pulses have an oscillation thresh-
old approximation given by

Ip= (casn)1(goc).

For intensities below this threshold intensity, the
SBS-driven Stokes wave will not build up. For pulses
with pulse lengths in the 5-10-nsec regime, SBS could
be a significant problem. Consider, for example, a 20
cm X 20 cm window with a reflectivity of 0.001 at the
edges. For a 5-nsec-long, narrow-band (<0.3 GHz)
pulse from a KrF laser, 1 J/cm2 of average pump radia-
tion will be the upper fluence limit for avoiding this
parasitic process. This corresponds to an upper limit
on the total energy through the mirror of only 400 J.
Exciting the transverse SBS parasitic will result in loss
of transmission efficiency and probable damage to the
window.

The equations presented here are based on mono-
chromatic pumping. Including pump bandwidth will
increase the threshold.- The exact dependence of
threshold with bandwidth depends on how the pump
is modeled9 and is beyond the scope of this Letter.
However, under the assumptions of Eq. (27) of Ref. 9,
the broadband threshold intensity (Ithb) is related to
the calculated monochromatic threshold intensity
(Ithm) by

Ithb = Ithm + Icr' ICr = (4Avp)/g, (13)

where App is the bandwidth of the pump, which is
assumed to be much much greater than the scattering
linewidth Av.

In conclusion, a simple analytic expression has been
developed to analyze transverse SBS geometries.
This analytic form agrees well with the results of a
separate exact computer model. SBS thresholds for
narrow-band pump light are in the kilojoule regime for
UV pulses of the order of 10 nsec. Two methods that
potentially reduce this problem are to increase the
laser linewidth to be much greater than the Brillouin
linewidth and to use small edge-clad windows. Either
of these measures will increase the threshold, but nei-
ther will eliminate the effect.

Funding for this research was provided by Los Ala-
mos National Laboratories under contract no. 9-X65-
W1478-1 and by Spectra Technology IR&D. We also
acknowledge useful discussions with Norm Kurnit and
Jay Ackerhalt as well as useful comments from a re-
viewer.

References

1. W. Kaiser and M. Maier, in Laser Handbook, F. T. Arec-
chi and E. 0. Schulz-Dubois, eds. (North-Holland, Am-
sterdam, 1972), Vol. 2, pp. 1077-1150, and references
therein.

2. A. Yariv, Quantum Electronics (Wiley, New York, 1975).
3. C. Yu,- M. F. Haw, and H. Hsu, Electron. Lett. 13, 240

(1977), and references therein.
4. D. B. Harris and J. H. Pendergrass, Fusion Technol. 8,

1868 (1985).
5. G. B. Benedek and K. Fritsch, Phys. Rev. 149,647 (1966).
6. E. P. Ippen and R. H. Stolen, Appl. Phys. Lett. 21, 539

(1972).
7. R. Vacher and J. Pelous, Phys. Rev. B 14, 823 (1976).
8. N. L. Rowell, P. J. Thomas, H. M. Van Driel, and G. I.

Stegeman, Appl. Phys. Lett. 34,139 (1979).
9. S. A. Akhmanov, Yu. E. D'yakov, and L. I. Pavlov, Sov.

Phys. JETP 39, 249 (1974).


