
Plasma Sources Sci. Technol. 6 (1997) 518–523. Printed in the UK PII: S0963-0252(97)87401-4

A self-consistent analytical model for
non-collisional heating

Shahid Rauf † and Mark J Kushner ‡

University of Illinois, Department of Electrical and Computer Engineering,
1406 W Green Street, Urbana, IL 61801, USA

Received 6 January 1997, in final form 3 July 1997

Abstract. Non-collisional heating is an important phenomenon in low-pressure
inductively coupled plasmas. In this paper, a self-consistent analytical model for
non-collisional heating is developed which shows that non-collisional heating is a
warm-electron effect that relies on a resonant interaction of electrons with the
electromagnetic wave. Electrons with velocities comparable to the effective wave
phase speed resonantly interact with the wave and gain net energy from it.
Collisions randomize this directed energy thereby leading to electron heating.
Non-collisional heating becomes more efficient if a larger proportion of electrons
participate in the resonant interaction process. This can occur due to an increase
in the electron temperature or decrease in the effective wave phase speed.
Collisions destroy the essential phase correlation between the electrons and the
wave, making the non-collisional heating process less efficient.

1. Introduction

Non-collisional heating is an important electromagnetic
phenomenon in low-pressure inductively coupled plasmas
(ICPs) as used in industrial applications such as plasma
materials processing [1–6]. It has been proposed that
non-collisional heating occurs when warm electrons gain
net energy while they traverse regions of inhomogeneous
electric fields. If collisions are sparse and the electron
mean free path is longer than the scale length of electric
field absorption, this directed energy is randomized (i.e.
electrons are heated) non-locally in the bulk of the plasma.
In this paper, we further investigate the mechanism of non-
collisional heating and the associated electron dynamics by
means of a self-consistent kinetic model.

Non-collisional heating in the context of low-
temperature plasmas has received significant new attention
in the past few years. Non-collisional heating has been
explored in considerable detail in the past as an anamolous
skin effect [7] as described by Weibel [8]. Using a
kinetic model, he demonstrated that classical expressions
for skin depth and surface impedance fail in a warm
collisionless plasma. He then kinetically explored the
electric field in the skin layer of a warm plasma and
recomputed the surface impedance. The present interest in
non-collisional (or hybrid) heating is a consequence of the
wide adoption of ICP sources for etching and deposition
by the microelectronics industry. Turner [1] was the
first to popularize that non-collisional heating mechanisms
might compete (or even dominate) collisional heating in the
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parameter regime (pressure and characteristic dimensions)
where ICP sources are generally operated. He attributed
this behaviour to warm-plasma effects. Godyaket al
[2] observed evidence of non-collisional heating during
electrical measurements in ICP reactors. Shaing [5] has
recently used a kinetic model to derive a general expression
for surface impedance that is valid in both collisional and
non-collisional regimes. Non-collisional heating effects
were first included in a large-scale ICP simulation by
Vahediet al [3]. Their approach was to define an effective
collisional frequency which would take into account non-
collisional heating. Rauf and Kushner [4] included non-
collisional heating effects in an ICP simulation by means
of the electron current density. This current density, which
was computed kinetically using a Monte Carlo simulation,
included contribution from all electron heating mechanisms.
It was used as a source for the computation of the electric
fields. Kolobovet al [6] have recently investigated non-
collisional heating using a non-local model.

In this paper, we use a self-consistent kinetic model
to look at the electron dynamics in the skin layer of a
warm plasma. We find that non-collisional heating can be
described as a warm-electron effect that relies on a resonant
interaction of electrons with the electromagnetic wave.
Electrons with velocities comparable to the ‘effective’ wave
phase speed resonantly interact with the wave and gain
net energy from it. Collisions randomize this directed
energy, leading to electron heating. We also explore the
effect of important plasma and wave characteristics on
non-collisional heating. It is shown that non-collisional
heating becomes more efficient as the proportion of
electrons participating in the resonant interaction process
increases. This can occur due to an increase in electron
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temperature or a reduction in the effective wave phase
speed (resulting from a decrease in frequency or an increase
in electron density). A phase correlation between the
wave and electrons is essential for the resonant interaction
process. Collisions destroy this phase correlation and
reduce the efficiency of non-collisional heating. The
analytical model also yields an expression for warm-
plasma conductivity which accounts for non-collisional
heating. We demonstrate the utility of this expression by
incorporating it into a general plasma equipment model.

In section 2, we describe the model and solve the
equations. In section 3, we use this model to understand the
mechanism of non-collisional heating, and the influence of
plasma and wave parameters on it. In section 4, we apply
the model of section 2 to a plasma equipment simulation.
Section 5 contains a brief summary.

2. Description of the model

In this section, we describe the plasma model and solve the
resulting equations. This analysis will be connected to non-
collisional heating in section 3. Consider a one-dimensional
(1D) scenario in which there is a plasma–vacuum interface
at thez = 0 plane. The positivez direction points towards
the plasma. Az-directed (k = kz) y-polarized (E = Eyy)
plane electromagnetic wave is assumed to impinge on the
interface from the vacuum side and penetrate into the
plasma. To compute the fields within the plasma, our model
consists of Maxwell’s equations and Boltzmann’s equation
for electrons,

∂fe

∂t
+ (v · ∇)fe + qe

me
(E + v ×B) · ∇vfe = −νfe (1)

where fe(r,v, t), ν, qe, E andB are, respectively, the
electron distribution function, electron momentum transfer
collision frequency, electron charge, electric field and
magnetic field. To simplify the model, we assume quasi-
neutrality and neglect the displacement current. Maxwell’s
equations and (1) are coupled through the current density
J ,

J = qene
∫
vfe dv (2)

wherene is the electron density. We neglect the ion current
due to the low ion mobility. The collision frequency and
electron density are assumed to be constant throughout the
plasma.

Linearizing (1), assuming that all quantities vary as
exp(−iωt), taking the Fourier transform in space and
making use of Maxwell’s equations, we obtain

J = σ ·E (3)

where

σ = iq2
e ne

me

∫
dv

v

k · v − ω − iν
∇vf0

·
[(

1− k · v
ω

)
I + kv

ω

]
. (4)

While deriving (4), the induced magnetic field was linked
to the electric field through Faraday’s law. It’s effect has

been self-consistently taken into account in (4) (it appears
in the term within square brackets) and the later analysis.
This effect is important for the results described in this
paper. From here onwards, we assume that the medium is
isotropic. Since the electric field only has ay component
in the vacuum,J andE will also have onlyy components
in the plasma. The only significant component of (4) is,
therefore,σyy . Assuming that electrons have a Maxwellian
distribution with a temperatureTe, we find

σyy = iq2
e ne

me(ω + iν)

[
1−W

(
ω + iν

|kz|(kBTe/me)1/2
)]

(5)

whereW(z) is defined as

W(z) = 1√
2π

∫ ∞
−∞

dx
x

x − z e−x
2/2. (6)

Since the plasma is assumed to be isotropic, we replaced
kz with |kz| in (5). The functionW(z) can be computed
in terms of the complex error function [9] or the plasma
dispersion function [10].

We now return to the 1D scenario. Combining
Maxwell’s equations, making use of perfectly reflecting
boundary conditions [11] and taking the Fourier transform
of the resulting expression, we find

Ey(kz, ω) = 2iωBx(0−)
k2
z − iωµ0σyy

(7)

whereBx(0−) is the value ofBx at z = 0 in the vacuum.
Taking the inverse Fourier transform of (7), we obtain

Ey(z, ω) = iωBx(0−)
π

∫ ∞
−∞

dkz
eikzz

k2
z − iωµ0σyy(|kz|, ω) .

(8)
To solve this integral, we analytically extend the integrand
to the lower and upper half in the complexkz plane, and
close the loop at infinity in the upper half plane. The
solution is the sum of residues at the poles in the upper
half plane. The poles are the zeros of

k2
z − iωµ0σyy(|kz|, ω) = 0. (9)

It can be verified that (9) has only one root in the upper
half plane. Labelling itkz1, we find that

Ey(z, ω) = −2ωBx(0
−) eikz1z

∣∣∣∣ kz − kz1

k2
z − iωµ0σyy

∣∣∣∣
kz=kz1

. (10)

The effective warm-plasma conductivity is given by (5),
where kz is the solution of (9) with Im(kz) > 0. Note
that all quantities have been transformed back from Fourier
space to real space.

The model yields the correct limits for the cold- or
collisionless-plasma approximations. In the cold-plasma
case,Te → 0, and the argument of functionW(z) in (5)
becomes very large. Using (7.1.23) of Abramowitz and
Stegun [9], we find that

lim
|z|→∞

W(z) ≈ − 1

z2
− 3

z4
+ . . . . (11)
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Figure 1. Magnitude of W (z ) as a function of Te for
ω/2π = 13.56 MHz and ne = 3.0× 1011 cm−3, where z is
defined in (5). |W (z )| is the ratio of the warm-plasma
conductivity correction (σwarm − σcold ) to the cold-plasma
conductivity (σcold ). If |W (z )| is small, the cold-plasma
expression for conductivity is valid. Large values imply that
warm-electron effects are important.

For smallTe, W(z) scales asTe andσyy is given by

lim
Te→0

σyy = iq2
e ne

me(ω + iν)
. (12)

This is indeed the cold-plasma expression for conductivity.
In the case of a collisionless plasma,ν = 0. If

|ω/kz| � (kBTe/me)
1/2, we can use [11]

W(z) ≈ i
(π

2

)1/2
z e−z

2/2+1− z2+· · · |z| < 1 (13)

and (9) to obtain

1

δ
≡ |kz| =

[
ωω2

pe

c2

(
meπ

2kBTe

)1/2]1/3

. (14)

This is the collisionless skin depth as described by Ichimaru
[11].

3. Resonant non-collisional electron heating

We now connect the model described in the previous section
to non-collisional heating. We will concentrate here on the
behaviour of the electrons. The physical mechanism of
non-collisional heating as represented by this model can
best be understood in terms of the electron velocityvye.
Using (3), (5) and (6), we find that

vye = σyy

qene
Ey =

[
iqe

me(ω + iν)
− iqe√

2πme(ω + iν)

×
∫ ∞
−∞

d

(
vz

vth

)
vz

vz − (ω + iν)/|kz1| e
−1/2(vz/vth)2

]
Ey

(15)

wherevth = (kBTe/me)1/2. Note thatkz1 is the solution of
(9), and (15) holds in real space. To understand (15), we
approach it in stages. We first consider a cold collisionless
(Te = 0, ν = 0) plasma. In this situation,vye =
(iqe/meω)Ey . The electrons, therefore, synchronously
oscillate with the electric field in steady state.vye and

Figure 2. Magnitude of W (z ) for ν/ω = 0.3 and
Te = 1.0 eV, where z is defined in (5). (a) |W (z )| as a
function of frequency for ne = 3.0× 1011 cm−3. (b) |W (z )|
as a function of ne for ω/2π = 13.56 MHz. Warm-electron
effects become less pronounced with increasing effective
wave speed, obtained by increasing ω or decreasing ne.

Ey are, however, 90◦ out of phase. The phase difference is
such that the electrons gain energy from the electromagnetic
wave in one half of the rf cycle and transfer it back in the
other half. The steady state power deposition,

P = Re(σyy)|Ey |2 (16)

is, therefore, zero. As we add collisions (ν 6= 0),
electrons start experiencing a viscous drag which has two
consequences. First, in order to maintain a steady-state
oscillation, a constant power input is required (P 6= 0).
Second, collisional drag leads to a phase alignment of the
electron velocity and electric field.

In a warm collisionless (Te 6= 0, n 6= 0) plasma, the
second term in (15) also contributes to electron motion.
This term is an ensemble average of the contribution from
all electrons at that location. The largest contribution
comes from electrons whose velocities are comparable
to ω/|kz1|, which we will refer to as the ‘effective’
phase speed. These electrons interact resonantly with the
wave, as is evident from the (vz − ω/|kz1|) term in the
denominator. To learn what is special about these electrons,
we consider two extreme situations. Ifkz1(real) � kz1(imag),
ω/|kz1| is the phase speed of a travelling electromagnetic
wave. Electrons whose velocities are comparable to
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Figure 3. Electron density and electric field amplitude computed using the (a) quasi-collisional, (b) self-consistent and
(c) conductivity models. The pressure is 5 mTorr, the inductively coupled power is 300 W and the simulation has been done
in Ar.

ω/|kz1| experience essentially dc electric fields, and gain
net directed energy from them. Ifkz1(imag) � kz1(real),
the electromagnetic wave decays exponentially in the
z direction. Electrons whose velocities are comparable
to ω/|kz1| constitute that group which can gain directed
energy from the electromagnetic wave during one half of
the rf cycle and leave the region where electron acceleration
occurs before the electric field reverses its direction. For
a generalkz1, the situation will be more complicated.
The resonance will, however, be present. Non-collisional
heating can, therefore, be interpreted as a consequence
of a resonant interaction of a subset of warm electrons
with the electromagnetic wave. As in a cold plasma,
collisions introduce drag and lead to the conversion of
this directed electron energy to random thermal energy.
Note that no structure is assumed for the electric field
in (15). Non-collisional heating can take place in this
configuration even when the electric field is homogeneous
(kz1(real) � kz1(imag)).

We now use the model to investigate the effect of
electron temperature, electron density, collision frequency
and frequency on non-collisional heating. We will do so in
terms of the magnitude ofW(z) in (5). W(z) is the ratio of
the warm-plasma conductivity correction (σwarm − σcold )
to the cold-plasma conductivity (σcold ), where σcold is
defined in (12). If |W(z)| is small, σwarm ≈ σcold ,
and the cold-plasma expression for conductivity is valid.
Large values of|W(z)| imply that warm-plasma effects
are important. The magnitude ofW(z) as a function
of electron temperature is shown in figure 1 for several
values ofν/ω. For all values ofν/ω, |W(z)| increases
whenTe is increased. In our representation, non-collisional
heating relies on the fact that warm electrons gain net
directed energy from the electromagnetic fields through a
resonant interaction. As the electron temperature increases,
the proportion of electrons with speeds comparable to the
effective wave phase speed increases. This makes the
non-collisional heating process more efficient and|W(z)|
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increases. The same effect occurs if the effective wave
phase speed decreases. The effective wave phase speed
(ω/|kz|) can decrease due to either a decrease in frequency
or an increase in|kz|. The effect of frequency is shown
in figure 2(a) where|W(z)| increases with decreasing
frequency. According to (9), one factor that can increase
|kz| is an increase in electron density. This is the reason
|W(z)| increases with increasingne as shown in figure 2(b).

Maintaining a phase correlation between the electrons
and electromagnetic wave is essential for the resonant
interaction to take place. Collisions dislodge resonantly
interacting electrons from their position in phase space
and make the non-collisional process less efficient. We,
therefore, find in figure 1 that, for a givenTe, |W(z)|
decreases as the collision frequency is increased.

4. Application to ICP reactor modelling

Low-pressure inductively coupled plasmas are widely
used in the microelectronics fabrication industry. To
understand the operation of these plasma reactors and
improve their performance, considerable effort has been
put into the numerical modelling of these devices [12–14].
An important issue in these models is how the plasma
dynamics are coupled with the electromagnetic fields so that
kinetic information about non-collisional heating is properly
communicated to Maxwell equations,

∇2E + (ω2/c2)E = −iωµ0J . (17)

This problem was first addressed by Vahediet al [3]. They
took account of non-collisional heating effects through an
effective collision frequency in the cold-plasma expression
for conductivity, (12). The effective collision frequency
was derived using a 1D phenomenological model and a
specific profile was assumed for the electric field. Rauf and
Kushner [4] used a Monte Carlo simulation to kinetically
compute plasma current. This plasma current was used
directly in (17) to determine the electric fields. The
analytical model in this paper suggests an alternative
method for coupling a kinetic plasma simulation with the
electromagnetic field computation: one can treat (5) as the
general expression for warm-plasma conductivity and use
it to couple J with E in (17). The resulting equation
can then be solved forE. A number of approximations
are involved here. First, (5) is strictly valid only for the
1D situation considered in this paper. Also, (5) has been
derived for a homogeneous plasma and Maxwellian electron
energy distribution. The results described below, however,
show that the resulting computational model is reasonably
accurate. Because of these approximations, the use of
this approach is only warranted if electron current density
cannot be computed kinetically. Otherwise, the technique
described in [4] will prove to be more effective.

To test the approach described above, we used (5) to
couple an electron Monte Carlo simulation (EMCS) with
Maxwell equations in the hybrid plasma equipment model
(HPEM) [12], a comprehensive plasma simulation tool.
Simulations were performed for an inductively coupled
Gaseous Electronics Conferencereference cell with a five-
turn antenna. The reactor is described in more detail by

Figure 4. Electric field amplitude at (r = 3 cm, z = 6.47 cm)
and peak plasma density as a function of pressure from the
conductivity and self-consistent models. These results are
from simulations of argon in the inductively coupled GEC
reference cell. The inductively coupled power is 300 W.

Miller et al [15]. The electric field amplitude and electron
density profile at 5 mTorr in Ar are shown in figure 3
using three different models. Inductively coupled power,
defined as

∫
J ·E dr3, is kept constant at 300 W. The three

models only differ in the manner in which the EMCS is
coupled to Maxwell equations. In the ‘conductivity model’,
the warm-plasma conductivity, (5), is used for coupling.
The ‘self-consistent model’ [4] makes use of a kinetically
computed electron current density for coupling. Since this
model does not make any assumptions about the nature
of the interaction, its predictions can be assumed to be
the most accurate of the three. In the ‘quasi-collisional
model’, we use the cold-plasma conductivity, (12), to
couple the EMCS and Maxwell’s equations. This model
does not communicate non-collisional heating effects to the
Maxwell equations. We find that both the self-consistent
and conductivity models yield nearly the same electric field
and plasma density, both of which are significantly smaller
than the quasi-collisional model. The large difference
in densities is a consequence of the fact that inductive
power deposition, which is kept constant here, is defined
as
∫
J ·E dr3, whereJ = σcoldE in the quasi-collisional

model. This power only takes account of collisional heating
in the quasi-collisional model. Since the kinetic electron
Monte Carlo simulation includes all heating effects and
non-collisional heating is prominent at 5 mTorr in Ar,
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significantly more power (almost three times) is deposited
into the electrons [4]. This leads to the large density
observed for the quasi-collisional model in figure 3(a).

The peak electron density and the electric field
amplitude at a point in the plasma 0.4 cm below the quartz
window, in line with the centre coil (r = 3 cm, z =
6.47 cm), are plotted in figure 4 as a function of pressure
for the conductivity and self-consistent models. The results
of the quasi-collisional model under similar conditions are
shown in [4]. The trends for the conductivity and self-
consistent models are similar. The actual magnitudes are,
however, slightly different, particularly in the peak electron
density. This is mainly due to the approximations that are
described above. Under similar conditions, the model of
Vahedi et al [3] compares favourably with the results of
the conductivity model [16].

5. Conclusions

We described a self-consistent analytical model for non-
collisional heating in plasmas. The model was used to
investigate the mechanism of non-collisional heating and
to determine the regimes in which non-collisional heating
effects are dominant. It was found that non-collisional
heating can be described as a consequence of a resonant
interaction of electrons with the electromagnetic wave.
The electromagnetic wave imparts directed energy to the
electrons which have velocities comparable to the effective
wave phase speed. This directed energy is randomized
by collisions, leading to electron heating. It was also
found that electron heating is efficient if the proportion of
electrons participating in the resonant interaction process
is large, and there are not many collisions that destroy
the essential phase correlation between the wave and
electrons. On a practical note, the analytical model yielded
an expression for warm-plasma conductivity. It was shown

that this expression can be used in plasma simulations to
take account of non-collisional heating effects.
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