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Floating Sheath Potentials in Non-Maxwellian
Plasmas
M. J. KUSHNER

Abstract-The floating sheath potential in a plasma having a Max-
wellian electron distribution function is ec5 = -kTe In (a/b)/2 where
Te is the electron temperature, a is the ratio of electron temperature
to ion temperature, and b is the ratio of electron mass to ion mass.
This expression is derived by equating the flux of electrons and ions
to a surface in the plasma. Only electrons initially having an energy
greater than -eo3 flow to the surface. These electrons are in the tail of
the distribution, a region that differs significantly from a Maxwellian
in many plasmas. An analysis is performed where the sheath potential
is solved for using a two-temperature model for the electron distribu-
tion function. The two-temperature model accurately describes the
distortion from a Maxweilian in the tail of the distribution function.
The magnitude of the sheath potential calculated with the two-tempera-
ture distribution is significantly smaller than that obtained using a
Maxwellian distribution, a result of the reduction in the relative abun-
dance of energetic electrons in the tail of the distribution.

Wo r HEN IMMERSED in a plasma, an insulator or isolated
'conductor will acquire a negative charge [11. Acquisi-

tion of the charge is caused by the disparity in mobility
between electrons and ions. Electrons, having a much higher
mobility and smaller mass than ions, have a correspondingly
higher thermal or random current in the plasma. This condi-
tion is exacerbated when the electron temperature is higher
than the ion temperature. Due to the electrons having a larger
random current, the surface immersed in the plasma initially
collects more electrons than ions, thereby collecting an excess
of negative charge. Since in the steady state the surface can-
not continue to collect net charge, a negative potential develops
at the surface to retard the electron flux. The electron flux is
lowered to a value equal to that of the ion flux. This retarding
electrical potential is called the sheath potential, and the non-
neutral region adjacent to the surface is called the sheath. The
sheath is typically a few to tens of Debye lengths thick. The
magnitude of the sheath potential can be solved for by assum-

ing the electron and ion distribution functions are Maxwellians,
the sheath is collisionless, and by equating the values of the
electron and ion fluxes entering the sheath [1]. Doing so, the
sheath potential &, is given by

eo, = -kTe In (TeMI(Tim))12. (1)

In (1), Te is the electron temperature, TI is the ion temperature,
m is the electron mass, and M is the ion mass. The sheath po-
tential is typically a few to ten times the electron temperature.
As a consequence of the negative potential acquired by the

surface, only electrons entering the sheath with kinetic energy
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greater than the sheath potential can be collected by the
surface. These particles have energies many times the average
electron energy and reside in the tail of the electron distribu-
tion. It is well known, though, that electron distribution func-
tions differ from a Maxwellian most markedly at higher ener-
gies, especially for energies greater than the first inelastic
threshold [2]. Typically, the electron distribution is depleted
of electrons with energy greater than this value. Electrons
energetic enough to excite the gas atoms or molecules, and
do so, lose in energy a value at least equal to the threshold
value for excitation. The electron typically rejoins the dis-
tribution at an energy below the threshold value. The electron
distribution is therefore "cut off" at an energy given by the
first excitation threshold. Since it is the more energetic elec-
trons that are collected by a surface immersed in a plasma,
assuming a Maxwellian electron distribution overestimates
the electron flux to the surface, and hence overestimates the
sheath potential.
A complete description of the sheath region near a surface

in a plasma requires one to simultaneously solve Poisson's and
Boltzmann's equations for the electrons and ions in a region
many Debye lengths thick adjacent to the surface. The effect
of interest, that of the change in sheath properties resulting
from a non-Maxwellian electron distribution, can be studied
in some detail with a simpler analysis to be discussed here.
In this analysis, a solution for the electron distribution func-
tion, called a two-temperature model, is used [3] -[5] . In this
solution, the electron distribution function is assumed to be
the continuation of two Maxwellian distributions with separate
electron temperatures T1 and T2. For electron energies less
than a cutoff energy Ec, typically equal to the first excitation
threshold, the distribution is a Maxwellian with temperature
T1. For electron energies greater than the cutoff energy, the
distribution is a Maxwellian with temperature T2. To simulate
the cutoff behavior of the true distribution, we must have
T2 < T1. The two electron groups are referred to as the bulk
(first group) electrons and the tail (second group) electrons.
The normalization constants for the two segments of the
distribution function are chosen such that the distribution is
continuous at EC and that the integral of the distribution
function over all energies is unity. That is

a1f(Tl, Ec) = a2f(T2 , EC) (2)

A o1f(T1,c)(2 ) de

+ U2 f(T2, )(2c) de= 1c~~~- (3)
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where f(T, e) = exp (-e/kT). The normalization constants are

2\1/2
o= ((EI/X)3 m)i(4)

2
erf (xl/2) - e-xX1/2

+-x(li3)33/2[ (1 - erf ((X:3)112))

+eX13(x3)ljj

0a2 = oil e X(IP) (5)

where X = EI/kT,, and ,B = T1 /T2. If T1 = T2, the distribution
is a Maxwellian.
To solve for the sheath properties, we assume the sheath is

collisionless for both electrons and ions. The electron and ion
density in the plasma at the edge of the sheath is No. The ion
velocity at that point is VO. By flux and energy conservation,
we can solve for the ion density N(x) in the sheath:

NOVO = N(x) V(x) (6a)
I MV(x)2 = I MV2 - ek(x) (6b)

Equation (9) can be solved by direct integration beginning at
the edge of the sheath. The initial conditions are 0 = 0 and
ao/ax = 6, where 6 is a small negative value. Integration con-
tinues until ¢(x) = 4s, The distance x at which this occurs is
then the sheath thickness. The sheath potential /, is obtained
by equating the electron and ion fluxes to the surface:

No°[f a1f(T1, e) de

NoVo = + JE f2f(T2 e)(2m)d]

No a2 f(T2, 6) (2) de,

-eos < Ec

-eos >Ec.

(10)

To generalize the analysis, it is convenient to rewrite (9) in
normalized units:

a2 = -(1I/( - 0p6/0)l/2 - n(rq)/No)

N(x) =No/(I - 2eq(x)/MV2)112.
In (6), ¢(x) is the electric potential. The el

a point in the sheath with potential ¢(x) is

n(x)=Nof F(e) el/2 de
-e4(x)

where F(e) is the electron distribution functi
at the edge of the sheath. Equation (7) is sii
that only electrons at the edge of the sheath i
energy greater than -e4(x) will be energetic
the potential hill at location x. For (7) to b
assume that the absolute magnitude of the pol
tonically increasing function of distance bet
the sheath and the surface. For our purpos
temperature Maxwellian distribution. The
in the sheath is therefore

12/d)

00

12e \1/2
+3 a2f(T2, )I\- dej,

U2f(T2, e) (-) de,

With these expressions for electron and ion di
potential ¢5(x) is obtained by directly solving Pc

a2 ¢(x) eNO 1
ax2 eo (1 2eo(x)/MV2)"/2

(6c) where = eq/kTj, 6 = mIM, 0 = T1/T,, and 772 =x2e2NO/kT1eO.
Lectron density at i is the electric potential divided by the first group electron

temperature, 6 is the ratio of electron to ion mass, and 0 is the
ratio of ion temperature to first group electron temperature.

7) is the spatial coordinate in units of the first electron group
Debye length X1 = (eokT INOe2)/2. Similarly, the electron
density n(x) can be written in dimensionless form as a func-

lon in the plasma tion of ,,, X = E/kTI and ,B = T21/T.
niply a statement The electric potential, electron, and ion densities in the sheath
nitially having an region of a two-temperature plasma, computed in the manner
enough to climb described above, are plotted in Fig. 1. The ratio of electron to
e valid., we must ion mass is 1 X 10-5, and the ratio of ion temperature to elec-
tential is a mono- tron temperature is 0.2. The cutoff energy for the two-tem-
ween the edge of perature distribution is E, = kTI. The curves are for different
es, F(e) is a two- values of the ratio of second group electron temperature to
electron density first group electron temperature. The smaller this ratio, the

more non-Maxwellian the distribution appears, and the more
severely the electron distribution is depleted of electrons with
energy greater than E,. As T2/TI decreases, both the sheath
potential and sheath thickness decrease. The decrease in sheath
potential is in part a result of a decrease in the average electron
energy but is more a reflection of the necessity of the ion flux

-ek(x) < E, to be balanced by more numerous, but less energetic, electrons
instead of fewer electrons of higher velocity, now absent from
the tail of the distribution. Because the sheath potential is

-ep(x) > Ec. lower with smaller T2 /TI, the ion energy, and hence velocity,
at the surface are smaller. Since the ion flux is conserved, the
smaller ion velocity translates to a higher ion density at the

(8) surface.
The degree to which the sheath potential is lowered, and

Ansitys the sheath sheath thickness reduced, is a function not only of T2ITI but
)isson's equation: also of the ratio Ec/kT,, the cutoff energy divided by the first

group electron temperature. The sheath potential as a func-
n (x)/NoA (9) tion of these two parameters is plotted in Fig. 2. For a given

/ value of T21T1, the electron distribution is more severely
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Fig. 1. Computed sheath properties using the two-temperature model.
a) Plasma potential measured with respect to the sheath potential (in
units of kTlfe) as a function of x/AX. (T1T1= 0.2, mIM = 1 X 10-5
EA/kT1 = 1.0). The dashed line is the locus of points where O(x)/¢5 =

0.9, illustrating the decrease in sheath potential as T2/T1 decreases.
b) Electron density (n (x)/N0) and c) ion density (N(x)/No) for the
same conditions.

3~~~~
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Fig. 2. Sheath potential (in units of kTl/e) as a function of T2/T1 for
different values of EI/kTi. The sheath potential for a Maxwellian
distribution corresponds to EI/kTi >> 1 and T2/T1T 1.

depleted of high energy electrons for lower values of Ec/kT1.
The sheath potential therefore decreases with decreasing
Ec/kT,. For T2/T1T 1 and Ec >> kT1, the two-temperature
distribution is nearly a Maxwellian and the sheath potential is
as given by (1).

To obtain the parameters T21T1 and E,/kTj to correct the
floating sheath potential for non-Maxwellian effects, one must
have some knowledge of the electron distribution function.
To obtain these parameters directly, a two-temperature analysis
for the electron distribution function must be performed.
T2/T1 and E,/kTj can also be obtained by other methods;
from experimentally measuring the distribution function using
electric probes or from numeric solutions of Boltzmann's
equation. When extracting T2 IT, and E,/kT1 from a plot of
the electron distribution function, one plots the log of the
function versus electron energy. The slope of the plot at a

given energy defines the local electron temperature (i.e.,
T1 or T2). An abrupt change in the slope of the plot defines
the cutoff energy E,. This method for obtaining T2 IT1 and

E,/kTj is discussed in detail in [6].
In order to apply the theory described in this paper, the

homogenous Boltzmann equation for the electron distribu-
tion function in the plasma must be solved to obtain the
parameters T21T1 and E,/kT1. Given these parameters, one

can characterize the sheath from the results of this theory as

summarized in Fig. 2. This method is much simpler, though,
than solving the inhomogenous Boltzmann equation required
for an exact description of the sheath. The calculation neces-

sary to obtain the exact description requires the solution of a

system of many simultaneous partial differential equations
(functions of the spatial coordinate and electron energy) as

well as simultaneous solution of Poisson's equation.
For purposes of illustration, the parameters T2/T1 and E,/kT1

were obtained from solution of the homogenous Boltzmann

I-

(a) x
-

l

0 -Eddd

8

0.7



KUSHNER: FLOATING SHEATH POTENTIALS IN NON-MAXWELLIAN PLASMAS

2.0

1.5 k
0-

w
0)

L

a.-

LL

1.0 _

Il1

0.5 _

0

8
0-%

cr

cc
w

0L

w

61.

4

2k

0 j o

1 10 100
2

E/N (10 '7V-cm)
Fig. 3. Electron temperature Te, T1, and T2 for discharges in Hg and
Xe plotted as a function of E/N. These values were obtained from
solution of Boltzmann's equation. Also plotted is PTeIos, the ratio
of the sheath potential based on Te to that obtained using T2/T1 and
EclikT1. For sufficiently large E/IN, T2 approaches T1 and OTTeAls
approaches unity.

equation for the electron distribution function in the plasma.
These solutions of Boltzmann's equation were obtained using
the program described in [7]. Te, T1, and T2 for discharges
in Hg and Xe with applied fields of 3 X 10-17-10-l V\. cm2
are plotted in Fig. 3. (Other solutions to Boltzmann's equa-
tion for these discharge conditions can be found in [8] and
[9].) The cutoff energies are 4.8 and 8.3 eV, respectively.
For both gases, the cutoff energy is the threshold energy for
excitation of the first electronic states. For these non-Maxwel-

lian distributions, we define e = 3 kTeI2, where e is the average
electron energy. Also plotted in Fig. 3 is oTeIos, the quotient
of the sheath potential one would calculate based on Te divided
by the sheath potential obtained using the parameters T2IT1
and EI/kT1. For a large range of E/N, oTel%s remains fairly
constant for both Hg and Xe. As E/N becomes sufficiently
large, T2 begins to approach Tl, and the distribution appears
to be more Maxwellian. When this occurs the value of ¢TTelos
approaches unity.

In conclusion, the sheath potential of an isolated conductor
or insulated surface immersed in a non-Maxwellian plasma was
computed using a two-electron temperature model. The two-
temperature model more accurately describes the depletion of
electrons with energy greater than the first excitation threshold
than does a Maxwellian distribution, and predicts a lower sheath
potential than one would calculate with a Maxwellian. For
typical glow discharges, the actual sheath potential is lower
by many times the average electron energy than the value one
would calculate using the bulk electron temperature.
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