SEASONING OF REACTORS: FEEDBACK CONTROL STRATEGIES TO COUNTER WAFER-TO-WAFER DRIFTS*

Ankur Agarwal^{a)} and Mark J. Kushner^{b)}

^{a)}Department of Chemical and Biomolecular Engineering University of Illinois, Urbana, IL 61801, USA aagarwl3@uiuc.edu

^{b)}Department of Electrical and Computer Engineering lowa State University, Ames, IA 50011, USA mjk@iastate.edu

http://uigelz.ece.iastate.edu

60th Gaseous Electronics Conference, October 2007

*Work supported by the SRC and NSF

AGENDA

- Seasoning of plasma reactors
- Approach and Methodology
 - Hybrid Plasma Equipment Model
 - Virtual Plasma Equipment Model
- Si etching in Ar/Cl₂
 - Effect of seasoning reactor walls on etch rates
 - Real-time and run-to-run control of etch rates
- Concluding Remarks

SEASONING OF PLASMA REACTORS

- Deposition on reactor walls during a process changes surface reactivity (e.g., seasoning).
- Seasoning changes reactive fluxes to substrate. To control wafer-towafer variability:
 - Clean the seasoned chamber following each wafer.
 - Season the chamber prior to process.

Ref: E.S. Aydil et al., JES 150, G418 (2003)

- Seasoning of reactor has been computationally investigated:
 - Accounted for variation of IEDs and reactivity on all surfaces
 - Feedback control implemented to mitigate process drifts.

HYBRID PLASMA EQUIPMENT MODEL (HPEM)

- *Electromagnetics Module:* Antenna generated electric and magnetic fields
- *Electron Energy Transport Module:* Beam and bulk generated sources and transport coefficients.
- Fluid Kinetics Module: Electron and Heavy Particle Transport, Poisson's equation

- Plasma Chemistry MC Module: IEADs to surfaces
- Surface Chemistry Module: Surface coverage and reactive sticking coefficients.

VIRTUAL PLASMA EQUIPMENT MODEL (VPEM)

- VPEM—A platform to investigate real-time-control strategies.
 - Sensor Module: Simulated sensors embedded in HPEM
 - Control Module: Implements programmable control scheme
 - Actuator Module: Based on set-point sensor reading, actuator is reset.

Si ETCHING IN Ar/Cl₂: WAFER SURFACE MECHANISM

- Cl adsorbs on forming SiCl_x passivation layer.
- $CI(g) + Si(s) \rightarrow SiCI(s),$
- $CI(g) + SiCI_n(s) \rightarrow SiCI_{n+1}(s)$
- lons etch passivation.
- $CI^{+}(g) + SiCI(s) \rightarrow SiCI_{2}(g),$
- $\text{CI}^{\scriptscriptstyle +}(g) + \text{SiCI}_3(s) \to \text{SiCI}_4(g),$
- $M^{+}(g) + SiCl_{x}(s) \rightarrow SiCl_{x}(g)$
- Etch products further passivates, creating etch blocks.
- $SiCl_2(g) + Si(s) \rightarrow Si_2Cl_2(s)$
- $SiCl_2(g) + SiCl_n(s) \rightarrow Si_2Cl_{n+2}$

Si ETCHING IN Ar/Cl₂: WALL SURFACE MECHANISM

• On chamber walls

```
SiCl_2(g) + W(s) \rightarrow SiCl_2(s)
```

 $SiCl_2(g) + SiCl_2(s) \rightarrow (no reaction)$

 $M^{+}(g) + SiCl_{2}(s) \rightarrow SiCl(s) + Cl(g)$

 $M^{+}(g) + SiCl_{2}(s) \rightarrow SiCl_{2}(g) + W(s)$

 Passivated walls effect reactivity of CI.

 $CI(g) + W(s) \rightarrow CI(s)$

```
CI(g) + CI(a) \rightarrow CI_2(g) + W(s)
```

 $CI(g) + SiCI_2(s) \rightarrow (no reaction)$

- Seasoning investigated for Si etch products in Ar/Cl₂.
- Base case:
 - Ar/Cl₂ = 90/10, 100 sccm
 - 15 mTorr, 300 W
 - 75 V bias at 5 MHz
- Silicon etching by chlorine is the source SiCl_x.
- Transport of SiCl_x results in deposition (and further sputter/etch) on other surfaces.

Si ETCHING IN Ar/Cl₂: REACTANT FLUXES

- Dominant ions are Ar⁺ and Cl⁺ due to dissociation of Cl₂.
- Dominant neutrals are CI, SiCl₂ and SiCl₄.
- SiCl₂ is potentially reactive with surfaces; SiCl₄ is not.
- Ar/Cl₂=90/10, 100 sccm, 15 mTorr, 300 W, 75 V at 5 MHz.

SI ETCH: ION ENERGY ANGULAR DISTRIBUTIONS

- Ion energies on wafer are bimodal, typical of rf sinusoidal biases.
- Ion energies on other surfaces peak at time averaged Φ_{floating} (38 V).
- Quartz nearly always at Φ_{floating} . IEADs extend to higher energy on grounded walls (oscillation in Φ_{plasma}).
- Reactivity of wafer and walls differ due to differences in threshold energies and IEDs.
- Ar/Cl₂ = 90/10, 100 sccm, 15 mTorr, 300
 W, 75 V at 5 MHz

SEASONING EFFECT: ETCH RATE

- Si etch for 3 min for each wafer.
- Etch rate in seasoned chamber decreases.
- Passivation of walls by SiCl₂ decreases further reactivity of SiCl₂ increasing density in plasma.
- SiCl₂ passivates wafer SiCl_x sites forming Si₂Cl_y etch blocks.

 $SiCl_2(g) + SiCl_n(s) \rightarrow Si_2Cl_{n+2}(s)$

- Ions removes Si₂Cl_y with no net contribution to etch rate.
- Rate of change of etch rate decreases with number of wafers; chamber wall conditions stabilize.

 Ar/Cl₂=90/10, 100 sccm, 10 mTorr, 300 W, 75 V at 5 MHz

SEASONED CHAMBER ETCH RATE: VOLTAGE

- Si etch rates decrease with seasoning.
- With additional wafers etch rates stabilize as chamber seasons.
- Etch rate stabilizes sooner at higher voltages.
 - Higher etch rates and more etch products season chamber faster.
 - Larger ion energies remove overlying Si₂Cl_n more rapidly.
- In spite of lower reactivity of CI on walls (and larger CI in plasma), etch rates decrease due to site blockage.

 Ar/Cl₂=90/10, 100 sccm, 10 mTorr, 300 W

SURFACE COVERAGES: WAFER

- As additional wafers are etched:
 - Flux of etch products to wafer increases.
 - Coverage of etch block, Si₂Cl_y increases.
 - lons remove etch block, exposing native Si.
 - Chlorination of native Si results in increasing coverage of Si.
- Ar/Cl₂=90/10, 100 sccm, 15 mTorr, 300 W.

REMEDY TO SEASONING: REAL-TIME CONTROL

- Etch rate was controlled using a feedback control loop as the chamber seasons.
 - Sensor: Etch rate monitor Actuator: Voltage
- Without control:
 - Re-deposition of etch product blocks sites...reduces etch rate.
- With proportional controller:
 - Voltage is generally increased to sputter re-deposition products.
 - Set-point etch rate is restored.

RUN-TO-RUN CONTROL: ACTUATOR BIAS NOT RESET

 Ar/Cl₂=90/10, 100 sccm, 10 mTorr, 300 W, 100 V at 5 MHz.

- Run-to-run control was achieved using a proportional controller
 - After each run, a *new* wafer is used, i.e. coverage of Si is 1.
- Bias voltage is not reset to actuator setting from previous run(s).
 - Chamber wall conditions lower initial etch rate.
 - Initially, aggressive voltage change is required to restore set point etch rate.
 - Ultimately, voltage is lowered as high etch rates are enabled by high bias voltage.

Iowa State University Optical and Discharge Physics

RUN-TO-RUN CONTROL: ACTUATOR BIAS NOT RESET

 Ar/Cl₂=90/10, 100 sccm, 10 mTorr, 300 W.

- β is the normalized rate of change of voltage during each control case.
- At high biases:
 - Aggressive voltage changes makes it difficult to achieve control.
 - High ion flux and low passivating radical flux.
 - Chemical etch transitions to physical etch.
 - Lower β maintains CI radical flux to a significant fraction of total radical flux.

RUN-TO-RUN CONTROL: ACTUATOR BIAS RESET

- Etch rate stability was achieved using run-to-run control as the chamber seasons.
- With proportional controller:
 - Bias voltage is reset to actuator setting from previous run.
 - Enables initial high etch rates → bias voltage is lowered
 - As chamber seasons, voltage increases to maintain set point etch rate.
- Ar/Cl₂=90/10, 100 sccm, 10 mTorr, 300 W, 75 V at 5 MHz.

CONCLUDING REMARKS

- Chamber seasoning was investigated in Si etch using Ar/Cl₂ plasmas.
- Etch rates decreased in a seasoned chamber.
 - Seasoned reactor increases SiCl₂ flux back to wafer.
 - Feedback of etch products (SiCl₂) from the plasma form Si₂Cl_y etch blocks.
 - Removal of Si₂Cl_y does not contribute to etch rate.
- Sensors and real-time control will be required to mitigate effects of seasoning.
- Proportional controller algorithm was used to maintain a constant etch rate in both real-time and run-to-run.
 - Sensor: Etch rate monitor
 - Actuator: Bias Voltage