SCALING OF PLASMA SOURCES FOR $O_2(^{1}\Delta)$ GENERATION FOR CHEMICAL OXYGEN-IODINE LASERS

D. Shane Stafford and Mark J. Kushner University of Illinois Department of Electrical and Computer Engineering Urbana, IL 61801 <u>http://uigelz.ece.uiuc.edu</u> <u>mjk@uiuc.edu</u>

June 2004

* Work supported by Air Force Office of Scientific Research and Air Force Research Laboratories

ECOIL_SCALE_0504_01

OXYGEN-IODINE LASERS

• $O_2(^{1}\Delta)$ dissociates I_2 and pumps I which lases on the ${}^{2}P_{1/2} \rightarrow {}^{2}P_{3/2}$ electronic transition.

O₂(¹Δ) + I(²P_{3/2}) ↔ O₂(³Σ) + I(²P_{1/2}) I(²P_{1/2}) → I(²P_{3/2}) + *h*ν (1.315µm)

- Conventional COILs obtain $O_2(1\Delta)$ from a liquid phase reaction.
- Electrical COILs obtain $O_2(^1\Delta)$ by exciting O_2 in discharge.

TYPICAL CONDITIONS

- Pressures: a few to 10s Torr (Higher is better to provide back pressure for expansion)
- Mixtures: He/O_2 , $f(O_2) = 10$'s 50% (Need He for discharge stability, tailoring E/N, high thermal conductivity).
- Size: Flow tube 3-10 cm diameter (pump limited?)
- Flow speeds: 10s m/s (plasma residence time many ms, flow times 10s ms)

ECOIL_SCALE_ICOPS_0504_02

O₂ ENERGY POTENTIAL ENERGY DIAGRAM

- O₂ is unique among common diatomic molecules as having low lying electronic states.
- O₂(¹Δ) [0.98 eV] and O₂(¹Σ) [1.6 eV] are readily accessible in the Frank-Condon corridor.

• J. S. Morrill, et al, www.nist.gov

REACTION MECHANISM

DESCRIPTION OF GLOBAL_KIN

- Global model with a user defined gas and surface reaction mechanism.
- Boltzmann's equation solved for electron distribution (linked to cross section database).
- Ion transport linked to database.
- Electric field obtained from circuit model or electro-magnetics-power balance.
- Plug flow model includes enthalpy induced change in flow speeds.

nonPDPSIM: 2-DIMENSIONAL PLASMA DYNAMICS

- nonPDPSIM was developed to investigate plasma hydrodynamics at moderate to high pressures in complex geometries.
 - 2-d rectilinear or cylindrical unstructured mesh
 - Implicit drift-diffusion for charged
 - Poisson's equation with volume and surface charge, and material conduction.
 - Circuit model
 - Electron energy equation coupled with Boltzmann solution for electron transport coefficients
 - Optically thick radiation transport with photoionization
 - Secondary electron emission by impact, thermally enhanced electric field emission, photoemission
 - Surface chemistry.
 - Monte Carlo Simulation for secondary electrons
 - Navier-Stokes for neutrals with individual diffusion speeds

ELECTRICAL AND ELECTRON PARAMETERS

 Thermal conduction and diffusion produces warm electrons upstream. Electron density peaks near maximum in T_e as attachment distance is short.

• 3 Torr, He/O₂=0.7/0.3, 6000 sccm, 20 W

OXYGEN ATOMIC AND MOLECULAR DENSITIES

- $O_2(1\Sigma)$ and O densities are maximum near peak power deposition.
- O₂(¹Δ) increases downstream as O₂(¹Σ) is quenched and transfer occurs from O(¹D). Yield here is 8%.
- O₂ is depleted by dissociation and gas heating.

• 3 Torr, He/O₂=0.7/0.3, 6000 sccm, 20 W

FRACTIONAL POWER DEPOSITION

- Significant power can be channeled into excitation of $O_2(^1\Delta)$ and $O_2(^1\Sigma)$.
- Optimum conditions are T_e = 1-1.2 eV, E/N = 8-10 Td.
- The challenge is operating at those values.
- Self sustaining (based on attachment) for $He/O_2 = 50/50 = 3 eV$, 80 Td. Higher with diffusion losses.

DISCHARGE PARAMETERS: SELF-SUSTAIN vs OPTIMUM

- Self sustaining based on balance between ionization and attachment for ground state feedstock gases.
- Optimum conditions based on maximum power dissipated in $O_2(^{1}\Delta, ^{1}\Sigma)$ excitation.
- Dilution does not achieve significant improvements.

TYPICAL PLASMA PROPERTIES: $He/O_2 = 50/50$, 5 Torr

- Plug flow model with inductively coupled plasma (nearly always a self-sustaining.)
- Initial high T_e to avalanche plasma favors dissociative attachment and formation of O-.
- Steady state $T_e = 2.1 \text{ eV}$ exceeds optimum to excite $O_2(^{1}\Delta, ^{1}\Sigma)$.

Optical and Discharge Physics

• He/O₂ = 50/50, 5 Torr, v₀ = 10 m/s, 1 W/cm³ ECOIL_SCALE_ICOPS_0504_04 TYPICAL PLASMA PROPERTIES: $He/O_2 = 50/50, 5$ Torr

- O₂(¹Σ) is collisionally quenched to O₂(¹Δ) after the plasma zone. O₂(¹Δ) resists quenching when energy pooling is not important.
- O atom production nearly equals $O_2(^1\Delta)$.
- Gas heating is significant,
 due to V-T relaxation,
 Frank-Condon heating.

LIFE IS BETTER THAN ADVERTISED: WHAT SAVES YOU?

- Performance of self sustained discharges is better than advertised with more optimum production of $O_2(^1\Delta)$.
- Dissociation and excitation of O₂ results in:
 - Less attachment
 - More efficient ionization
 - Lower self-sustaining Te
 - Higher fractional power into $O_2(^{1}\Delta, ^{1}\Sigma)$ provided dissociation is not large.
- For He/O₂ = 50/50, opt T_e = 1.0 eV. Self sustaining is
 - 3.1 eV (x = 0 cm)
 - 2.0 eV (x = 9 cm)

PROPOSED SCALING LAW

- A full factorial parameterization of velocity, pressure, power, and mixture was performed to determine scaling laws for $O_2(^{1}\Delta)$ yield.
- A scaling law is proposed giving yield (β) as a function of specific energy deposition (in eV per inlet O₂ molecule):

$$\beta = \frac{[O_2(^1\Delta)]}{[O_2] + [O_2(^1\Delta)] + 0.5[O] + 1.5[O_3]} \quad \Rightarrow \quad \beta = f\left(\frac{eV}{O_{2,\text{inlet}}}\right)$$

• Parameter ranges for ideal plug-flow system

 Velocity: Pressure: Power: Mixture: 	500 - 5000 cm/s 1 - 20 Torr 0.1 - 1.5 W/cc $3 - 100\% \text{ O}_2 \text{ in He}$	These ranges give specific energies of 0 – 250 eV
• Length:	20 cm 🛛 👔	

$O_2(^{1}\Delta)$ YIELD VS. SPECIFIC ENERGY DEPOSITION

 O₂(¹∆) yield obeys energy deposition scaling law to 1st order:

$$\boldsymbol{\beta} = f\left(\frac{\mathbf{eV}}{\mathbf{O}_{2,\text{inlet}}}\right)$$

- O₂(¹∆) yield increases with energy as inventory integrates.
- $O_2(^{1}\Delta)$ yield decreases > 5 8 eV as dissociation depletes ground state and $O_2(^{1}\Delta)$.
- Scatter is due to secondary effects (mixture, pressure, power).

Yield=
$$\frac{[O_2(^{1}\Delta)]}{[O_2] + [O_2(^{1}\Delta)] + [O_2(^{1}\Sigma)] + 0.5[O] + 1.5[O_3]}$$

O₂(¹ Δ) AND YIELD vs POWER

- Yield scales sub-linearly with power in a parameter space where energy scaling should be valid.
- Increasingly less uniform power deposition and local depletion of O₂ is likely the cause.

• Energy scaling says yield=40%

University of Illinois Optical and Discharge Physics

ECOIL_SCALE_0504_49

NON-SELF SUSTAINED DISCHARGES

- Self sustained systems are limited by need to balance attachment and diffusion losses by ionization.
- This pushes system to larger T_e or E/N.
- Externally sustained system provides means to reduce T_e or E/N. to more optimum regime.
- Example: E-beam sustained plug flow system.

 Low-energy deposition yield (molecules/eV) vs Fraction of energy from E-beam (5 Torr).

PLUG-FLOW WITH E-BEAM POWER DEPOSITION

- Increasing fraction of e-beam power lowers T_e, saturating at 5-6%
- Reduction in T_e shifts operating point closer to optimum value, increasing yield from 15% to 26%; and reducing dissociation.

• 1 W/cm³

SPIKER-SUSTAINER

- Spiker-sustainer circuit provides in situ "external ionization"
- Short high voltage (power) pulse is followed by plateau of lower voltage (power).
- Excess ionization in "afterglow" following spiker allows sustainer to operate below self sustaining T_e (E/N).
- Excess ionization decays within 0.5-1.5 μ s, during which T_e is below self sustaining value.
 - He/O₂ = 50/50, 5 Torr

- Lower T_e during sustain pulse better matches cross sections for excitation of $O_2(^1\Delta, ^1\Sigma)$.
- End result is a higher energy efficiency for $O_2(^1\Delta, ^1\Sigma)$ production.

• He/O₂ = 50/50, 5 Torr

ECOIL_SCALE_0504_41

CONCLUDING REMARKS

- O₂(¹∆) production is largely an energy driven process. Yields scale as eV/molecule. Low efficiency systems can produce large yields.
- Yield will ultimately either be statistically limited (e.g., super-elastic relaxation) or limited by depletion of fuel (e.g., dissociation).
- Efficiency of yield is largely determined by lowering T_e (E/N) to better match cross sections for O₂(¹Δ, ¹Σ). Negative-glow like devices might be ideal.
- Secondary effect of T_e (E/N) engineering is reducing dissociation rates (less depletion of fuel).
- External sources and spiker-sustainers are both attractive, though utmost care must be taken in physical overlap of two regimes.