PLASMA SOURCES FOR MICRO-THRUSTERS*

Ramesh A. Arakoni^{a)} and Mark J. Kushner^{b)}

University of Illinois Urbana, IL 61801

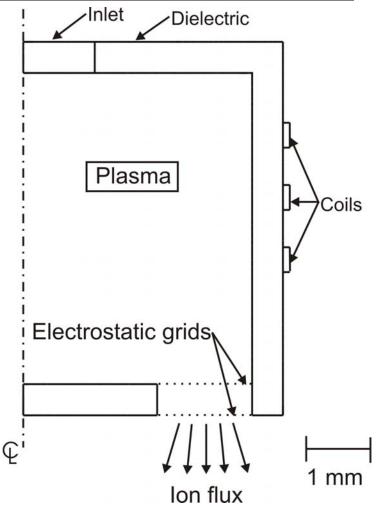
^{a)}Department of Aerospace Engineering, arakoni@uiuc.edu ^{b)}Department of Electrical and Computer Engineering, mjk@uiuc.edu

http://uigelz.ece.uiuc.edu

June 2004

* Work supported by NSF, AFOSR

AGENDA

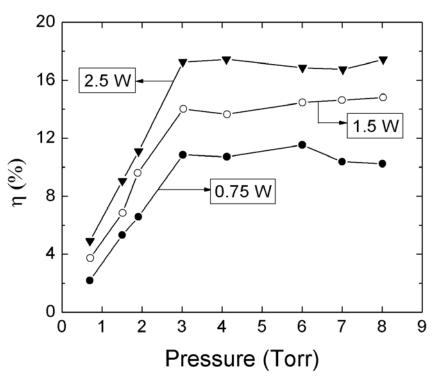

- Micro-Inductively Coupled Plasma (mICP) discharges: Applications to thrusters
- Description of model
- Results
 - Validation
 - Effect of flow
 - Ionization fraction
 - Effect of geometry
 - Sources of energetic neutrals
- Conclusions

MICRO THRUSTERS

- Micro-thrusters typically have diameters of a few cm and generate thrusts ranging from sub-µN to mN.
- Micro-plasma thrusters have high specific impulse, use inert non-contaminating propellants, and potentially have higher thrust-to-power ratios.
- Need to maximize the ionization fraction at low input power and sustain the plasma at high surface-to-volume ratios.
- Ionization fractions ~ 0.1% and higher can be obtained for spherical hollow cathode devices, but similar values have not been reported in mICPs.

ICP SOURCES: APPLICATIONS TO MICRO-THRUSTERS

- ICPs have potentially longer service lives due to the absence of electrodes.
- Need to operate at high frequencies to keep skin depth reasonably small.
- Scaling to smaller sizes may be limited by sheath width.
- These reactors can also be used as generators of energetic species such as $O_2(^1\Delta)$.



Representative geometry of the reactor

- Computational investigation of 2-d cylindrically symmetric reactors.
- Reactor geometry:
 - Radius of 0.3 0.5 cm and height of 0.5 0.6 cm.
- Operating conditions:
 - 500 mTorr to 8 Torr gas pressures.
 - Pure Argon gas and He/O₂ gas mixtures.
 - 0.5 3.0 Watts input power, at 450 MHz for validation.
 - 0.15 1.0 Watts absorbed power, at 493 MHz.
- Goals:
 - Validate model with experimental data.
 - Compute ionization fraction at these conditions.
 - Study the effect of geometry on plasma characteristics.

POWER ABSORPTION EFFICIENCY

- Efficiency defined as power absorbed by the plasma to the input power.
- Efficiency is very low at low pressures because plasma is not collisional enough.
- At higher pressures, efficiency is bounded by losses in the electrical circuit.

• O. B. Minayeva and J. Hopwood, J. Appl. Phys. 94, 2003 Poisson's equation with volume and surface charges for all charged species.

$$\begin{aligned} -\nabla \cdot \varepsilon \nabla \Phi &= \rho_{v} + \rho_{s} \\ \frac{\partial \rho_{v}}{\partial t} &= \sum_{i} - \nabla \cdot \left(q_{i} \vec{\varphi}_{i} \right) \\ \frac{\partial \rho_{s}}{\partial t} &= \sum_{i} - \nabla \cdot \left(q_{i} \vec{\varphi}_{i} \left(1 + \gamma_{i} \right) \right) - \nabla \cdot \left(\sigma \left(- \nabla \Phi \right) + \vec{j}_{E} \right) \end{aligned}$$

- Source densities due to e-impact, heavy particle reactions, and secondary emissions are included.
- Fluxes discretized using Scharfetter-Gummel technique.

$$\begin{aligned} \frac{\partial \mathbf{N}_{i}}{\partial t} &= -\vec{\nabla} \cdot \vec{\phi}_{i} + \mathbf{S}_{i} \qquad \vec{\phi}_{i+1/2} = \alpha \, \overline{\mathbf{D}} \bigg(\frac{\mathbf{n}_{i+1} - \mathbf{n}_{i} \exp(\alpha \Delta \mathbf{x})}{1 - \exp(\alpha \Delta \mathbf{x})} \bigg) \\ &= \frac{\left(\frac{\mathbf{q}}{|\mathbf{q}|}\right) \overline{\mu} \bigg(\frac{\Phi_{i+1} - \Phi_{i}}{\Delta \mathbf{x}} \bigg) - \vec{\mathbf{v}}_{\mathsf{BULK}}}{\overline{\mathbf{D}}} \end{aligned}$$

• Maxwell's equations were solved for electromagnetic fields and power deposition.

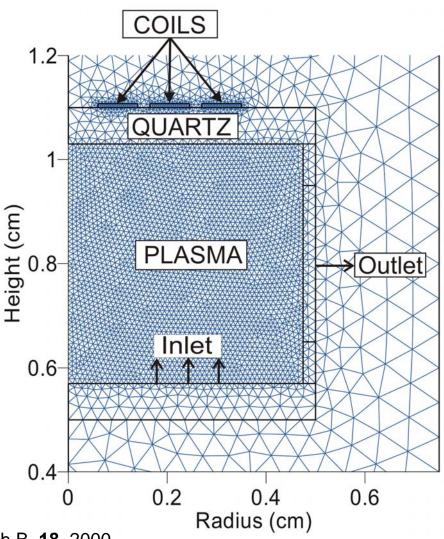
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 $\nabla \times \left(\frac{\vec{B}}{\mu_0}\right) = \frac{\partial}{\partial t} (\epsilon \vec{E}) + J$ $P = \frac{1}{2} (\sigma \vec{E}) \cdot \vec{E}$

• Navier-Stokes equations for gas velocities, temperature.

$$\begin{array}{ll} \text{Continuity} & \frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \, \vec{v} \, \right) = \, 0 \\ \text{Momentum} & \frac{\partial \left(\rho \, \vec{v} \, \right)}{\partial t} + \nabla \cdot \left(\rho \, \vec{v} \, \vec{v} \, \right) = \, -\nabla \, p + \nabla \left[\, \mu \left\{ \nabla \, \vec{v} \, + \left(\nabla \, \vec{v} \, \right)^{\mathsf{T}} \, - \, \frac{2}{3} \left(\nabla \, \vec{v} \, \right) \cdot \mathbf{I} \right\} \right] + \, \vec{\mathsf{S}}_{\, \text{plasma}} \\ \text{Energy} & \frac{\partial \rho \, \mathbf{c}_{\,p} \, \mathbf{T}}{\partial t} = \, -\nabla \, \cdot \left(\rho \, \mathbf{c}_{\,p} \, \vec{v} \, \mathbf{T} \, \right) - \, \nabla \cdot \left(\kappa \, \nabla \, \mathbf{T} \, \right) + \, \mathsf{S}_{\, \text{plasma}} \end{array}$$

- Electron energy equation coupled with Boltzmann solution for electron transport coefficients.
- Table look-ups of cross-sections for calculating rate coefficients.

MODEL: SOLUTION


- Finite volume techniques were used for 2-d unstructured triangulated meshes.
- Equations solved using implicit time-stepping using an iterative Newton's method with numerically derived Jacobian elements.

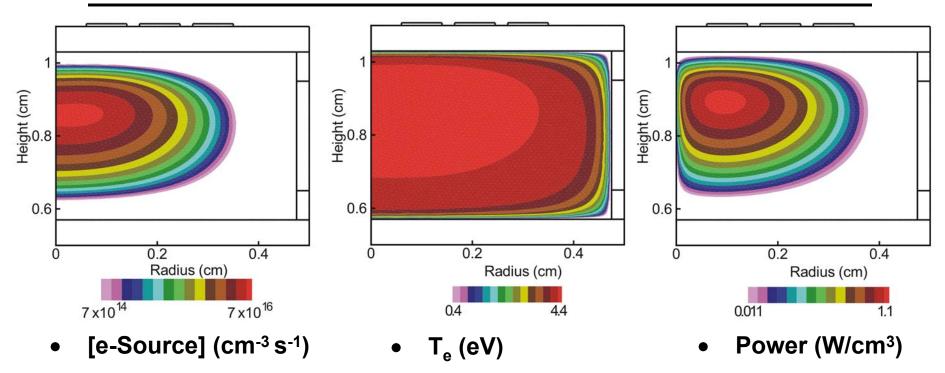
$$N_{i}(t + \Delta t) = N_{i}(t) + \Delta N_{i}\Delta t$$

$$\Delta N_{i} = N_{i}(t + \Delta t) - N_{i}(t) = \frac{\partial N_{i}}{\partial t}(t + \Delta t) \cdot \Delta t + \sum_{j} \left(\frac{\partial N_{i}}{\partial N_{j}}\right) \Delta N_{j}$$

Time integration was carried out until steady state was achieved.

VALIDATION: GEOMETRY AND CONDITIONS

- Investigations of a 2-d cylindrically symmetric micro-ICP reactor were conducted.
- Geometry and conditions were based on Hopwood et. al [1].
 - 500 mTorr, 1 sccm Ar
 - 450 MHz ICP
 - 0.5 3.0 Watts(Input)
- Ion densities, and T_e at the center of the reactor (0.0, 0.8 cm) are reported.

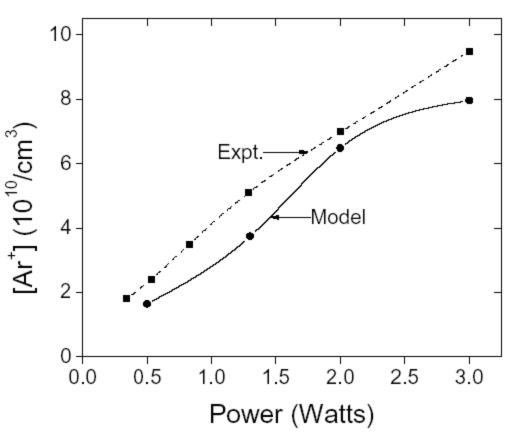


[1] J. Hopwood, O.B. Minayeva, Y. Yin, J. Vac. Sci. Tech B, 18, 2000

University of Illinois Optical and Discharge Physics

Ramesh_ICOPS 2004 #8

VALIDATION: BASE CASE RESULTS



- Skin depth of a couple of mm.
- Debye length of 0.1 mm near the center of the reactor.

- Operating conditions:
 - 500 mTorr, 1 sccm Ar
 - 1.3 Watts, 450 MHz

VALIDATION: ION DENSITY

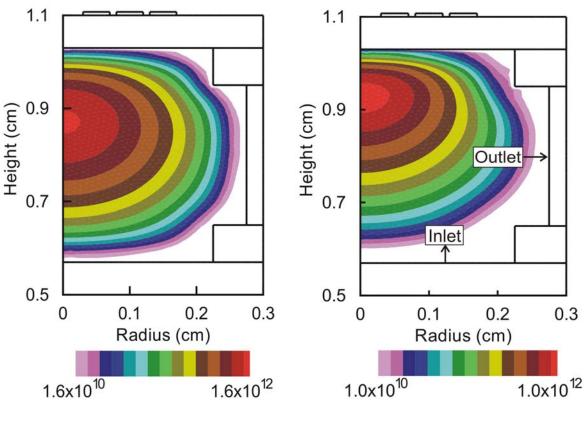
- Ion densities were maximum close to the center of the reactor.
- Power deposited in the plasma was 2.5% of the generator power[2].
- Ion densities of 10¹⁰-10¹¹ obtained with power density of 0.1 – 1.0 W/cm³.
- Lower densities could be attributed to effect of flow.

• 500 mTorr, 1 sccm Ar, 450 MHz

University of Illinois Optical and Discharge Physics

Ramesh ICOPS 2004 #10

VALIDATION: ELECTRON TEMPERATURE

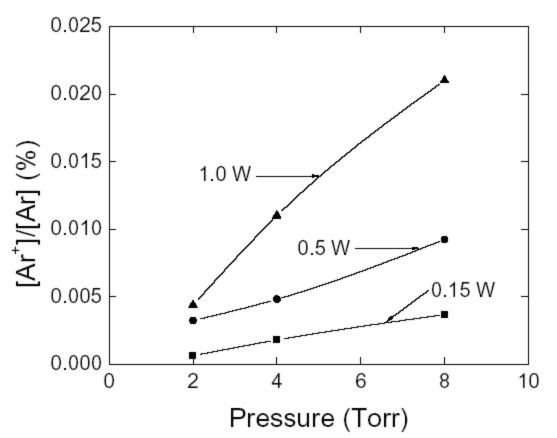

- 5 **Model overpredicts** electron temperature. Model 4 Model may underpredict multi-step ionization. 3 T_e (eV) Expt. 2 1 0 2 0 Power (Watts)
 - 500 mTorr, 1 sccm Ar, 450 MHz
 - Expt: Hopwood, Minayeva, J. Vac. Sci. Tech. B., 18, 2000

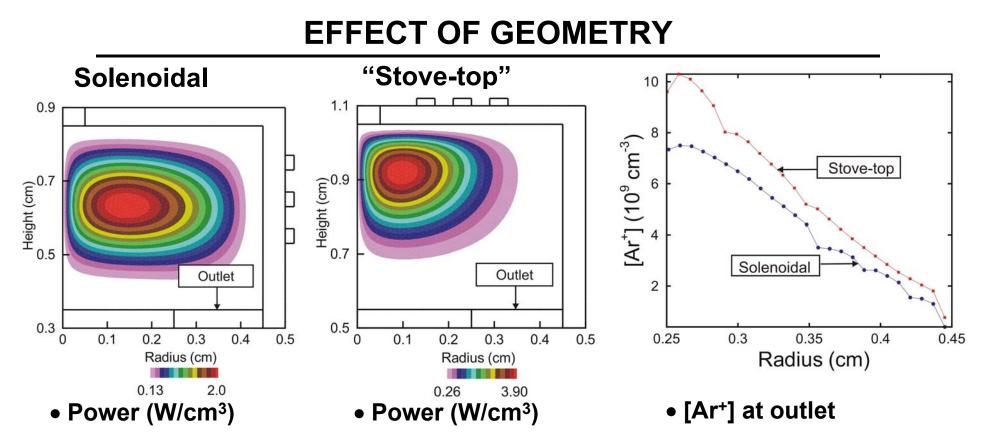
3

•

EFFECT OF FLOW: ION DENSITY

- Conditions:
 - 2 Torr, 1.5 Watt
 - 493 MHz ICP
- Coupling between the ions and the neutrals can affect the ion flux and the flow.
- Can be important at higher pressures (>1 Torr) and when there are large gradients in ion densities.

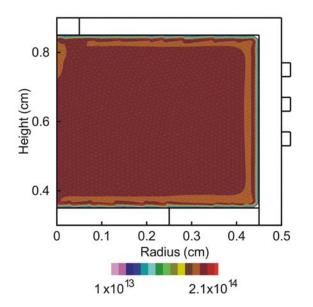



• [Ar⁺] without flow

• [Ar⁺] with 2 sccm flow

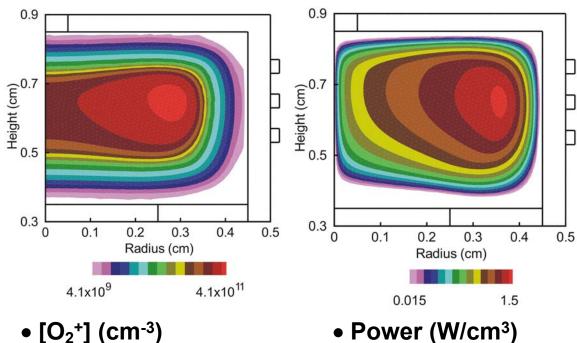
IONIZATION FRACTION

- Ar⁺ is the predominant ion as the pressure is too low for Ar₂⁺ to efficiently form.
- Ionization fraction increases with pressure.
- Higher ionization than those reported are required for effective use as a thruster.



- Conditions:
 - 2 Torr, 1.5 Watt
 - 493 MHz ICP
 - 2 sccm Ar

- Power deposition governed by penetration of electric field into the plasma.
- Steeper gradients of species densities caused by nonuniform power deposition affects the flowfield.


SOURCES OF ENERGETIC NEUTRALS

• $[O_2(^1\Delta)]$ (cm⁻³)

• Conditions:

- 2 Torr, 1.5 Watt
- 493 MHz ICP
- He/O₂ (70:30)
- 10 sccm

- $[O_2^+]$ (cm⁻³)
- Energetic species such as $O_2(^1\Delta)$ can be used in chemical LASERs.
- $[O_2(^1\Delta)] / [O_2] \sim 0.3\%$ is achieved with the current conditions although higher values are required.

CONCLUSIONS

- Ion densities of 10¹⁰-10¹² cm⁻³ (Ionization fractions of 10⁻⁵ to 10⁻⁴) were generated at modest power levels at pressures ranging from 0.5 - 8 Torr.
- At higher pressures, the momentum transfer between ions and neutrals is important.
- The effect of the geometry of the coils on power deposition and plasma characteristics were studied.
- $[O_2(^1\Delta)]$ production was simulated using the micro-ICP reactor and $[O_2(^1\Delta)] / [O_2] \sim 0.3\%$ was achieved using the base case conditions.