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POROUS LOW-k DIELECTRIC

e Metal interconnect lines
in ICs run through
dielectric insulators.

e The capacitance of the
insulator contributes to
RC delays.

e Porous oxides, such as
C doped SiO, (with CH,
lining pores) have a low
dielectric constant which
reduces the RC delay.

e Porosity is <0.5. Inter-
connected pores open to
surface offer pathways
to degrade k-value by
reactions.
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GOALS AND PREMISES OF SEALING MECHANISM

e To prevent the degradation of low-
k materials pores open to the

surface has to be sealed. Plasma Treatment | Function
¢ He followed by NH, plasma Time (s)
treatment has been shown to seal He 20 Surface
the pores. Activation
e He* and photons break Si-O NH, 20 Sealing
bonds while knocking off H ( Post-He)

atom from CH...

o Subsequent NH; exposure seals the pores by adsorption
reactions forming C-N and Si-N bonds.

e Experimental results from the literature were used to build the
sealing mechanism.

Ref: A. M. Urbanowicz, M. R. Baklanov, J. Heijlen, Y. Travaly, and A. Cockburn,
Electrochem. Solid-State Lett. 10, G76 (2007).
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MODELING : LOW-k PORE SEALING

He PLASMA Ar/NH,

PLASMAS
Energy and iL u
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bj angular
distributions
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e Hybrid Plasma e Plasma Chemistry e Monte Carlo
Equipment Model Monte Carlo Module Feature Profile
(HPEM) (PCMCM) Model (MCFPM)
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HYBRID PLASMA EQUIPMENT MODEL (HPEM)

e EEM (Electromagnetics ¢ EETM (Electron e FKM (Fluid
Module) Transport Module) Kinetics Module)
EETM PCMCM
FKM
/I/ Electron Energy and
E.B ener:gy - S Continuity, — S J\ angu|ar
02 equations | T, j> momentum, % /| distributions for
are solved M energy ions and neutrals;
EMM Ea equations; includes photon
Maxwell Ll species
: < N — Poisson’s —
equations ti
are solved Es — || ®9"a Ilon dare E
solve
iL %/ SCM
e PCMCM (Plasma MCRTM
Chemistry Monte Calculates energy
Carlo Module) Addresses resonance dependen?
radiation transport surface reaction
e MCRTM (Monte probabilities

Carlo Radiation e SCM (Surface
Transport Module) Chemistry Module) ity
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MONTE CARLO FEATURE PROFILE MODEL (MCFPM)

e The MCFPM resolves the surface

HPEM
topology on a 2D Cartesian mesh to
i L predict etch profiles.
PCMCM e Each cell in the mesh has a material
Energy and angu'ar identity. (Ce"S are 4 X 4 A).

distributions for ions .
and neutrals e Gas phase species are represented by

Monte Carlo pseuodoparticles.

e Pseuodoparticles are launched
towards the wafer with energies and
MCFPM angles sampled from the distributions

obtained from the PCMCM.

Provides etch rate
And predicts etch

profile e Cells identities changed, removed,

added for reactions, etching
deposition.
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INITIAL LOW-k PROFILE FOR SIMULATION

Height {nm})

Length {nm)
e 80 nm wide and 30 nm thick porous SiO,

e CH;groups line the pores
e Average pore radius: 0.8-1.4 nm
e Pores open to surface need to be sealed

o Will be exposed to successive He and NH; plasmas.
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SURFACE ACTIVATION IN He PLASMA

e He*and photons break Si-O bonds and removes H from CH,
groups.

e Bond Breaking He*(g) + SiO,(s) — SiO(s) + O(s) + He(qg)
He*(g) + SiO(s) — Si(s) + O(s) + He(9g)
hv + SiO,(s) — SiO(s) + O(s)
hv + SiO(s) — Si(s) + O(s)

e Activation He*(g) + CH (s) — CH,_(s) + H(g) + He(g)
hv+CH_ 4(s) — CH,,(s)+ H(g)
He*(g) + CH (s) — CH,,(s) + H(g) + He(g)
hv+CH_ 4(s) — CH,,(s)+ H(g)

* Reactive sites assist sealing in the subsequent Ar/NH, treatment.
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SEALING MECHANISM IN Ar/NH, PLASMA

e N/NH, species are adsorbed by activated sites forming Si-N and C-
N bonds to seal pores.

e Further Bond Breaking M*(g) + SiO,(s) — SiO(s) + O(s) + M(9)
M*(g) + SiO(s) — Si(s) + O(s) + M(g)

e N/NH, Adsorption NH,(g) + SiO,(s) — SiO NH,(s)
NH,(g) + Si(s) — SiNH,(s)
NH,(g) + CH (s) — CH_NH,(s)
NH, (g) + C(s) — CNH,(s)

e SiNH,-NH,/CNH,-NH, compounds help seal the pores where end
nitrogens are bonded to either Si or C atom by Si-C/Si-N bond

NH,(g) + SiNH,(s) — SiNH,-NH,(s)
NH,(g) + CNH,(s) — CNH,-NH,(s)
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He AND Ar/NH; PLASMAS

e He*and photons in He plasma break Si-O bonds and activate
CH, groups.

e He Plasma Species:

He He* He* hve
o Ar/NH, = 25/75 treatment seals the surface pores.
o Ar/NH, Plasma Species:

Ar Ar* Art e
NH, NH, NH H N
NH,* NH,* NH,* NH*
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He PLASMA PRE-TREATMENT

lon density:
3.8 x101° cm-3

Porous low-k
was exposed
for 30s to the

plasma.

20V substrate
bias assisted
ablating H and
Si-O bond
breaking.

Conditions:
He, 10 mTorr,
300 WICP,
20V Bias
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Ar/NH; PLASMAS

e Total ion density:

1 -3 . Total lon Density _
1'0x 10 cm 15_?‘2%5:”:??}( 1013cm-3] 15k [max= 1.0x 1D12cm3]

M I'I

e lon densities (cm-3):
NH,* 2.6 x 1010
NH,* 2.9 x 1010
NH,* 1.0 x 101°
NH* 1.4 x 109
H* 1.6 x107°

-
=]

Cluartz Window

Height (cm)
Height (cm)

h

e Neutral densities

(em): % 5 10 K EI' 10
NH, 5.30 x 1013 Radius {cm) Radius {cm)
NH, 2.40 x 1073 0,01 1.0

NH 1.6 x10% e Conditions: Ar/NH, =

N 24 x10% 25/75, 10 mTorr, 300 W ICP
Ar 6.0 x 1012
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PORE-SEALING BY SUCCESSIVE He AND NH,/Ar
TREATMENT

Height {nm)

Length {(nm) Length {nm) Length {nm)

eInitial . .-
. A . .
Surface Pores 2:? IOCtilr\ilatll-Ioen *Sealing Employing
poying Ar/NH; Plasmas
Plasma

Surface pore sites are activated by 30s He plasma treatment.

e Successive 20s NH, treatment seals the pores forming Si-N and
Si-C bonds.
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SEALING: POROSITY AND INTERCONNECTIVITY

e Sealing efficiency is ' ]
independent of porosity and 3 80% e 4
interconnectivity, optimizingat 5

0 = -
75-80% w Interconnectivity = 0.3
£ 40

e With higher porosity, the 3 ”0
number of open pores to the §
surface increases. T 015 02 025 03 035 0.4

] ] Porosity

e If pore radius remains the same,

00 p |

sealing efficiency is constant.

|
|

e With higher porosity but a fixed
pore radius, number of surface
pores increases.

e The fixed probabilities of C-N,
Si-N and N-N bond formation N A F RN R TTE
result in a constant sealing Interconnectivity

(=]
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o

Porosity = 0.1

N
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SEALING: TREATMENT TIME DEPENDENCE

o Without He plasma treatment, Ar/NH,
plasmas seal only 45% of pores.

e NH, ions are unable to activate all the
surface sites to complete the sealing.

e Sealing efficiency increases with He

treatment time for 30s, then saturates.

e 30s treatment breaks all surface Si-O
bonds and activates all surface CH,
groups.

e Sealing efficiency of pores increases
for 20s of Ar/NH; treatment, then
saturates — all dangling bonds on the
surface are passivated.
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SEALING: He TREATMENT TIME DEPENDENCE
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SEALING: Ar/NH; TREATMENT TIME DEPENDENCE
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SEALING EFFICIENCY: PORE RADIUS

e Sealin

g efficiency

decreases with
increasing pore size.

e Sealin
drops
for po
nm.

g efficiency
below 70% as
re radius > 1.0

e C-N and Si-N are
“first bonds.”

e Sealing requires N-

N bon

ding, which

has limited extent.

e Too large a gap
prevents sealing.
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CONCLUDING REMARKS

e Simulation of porous low-k material sealing was investigated
employing successive He and NH; plasma treatment.

e Si-N and C-N bonds formed by adsorption on active sites
followed by one N-N bond linking C or Si atoms from opposite
pore walls.

e Pore sealing efficiency is independent of porosity and
interconnectivity, while dependent on both He and NH, plasma
treatment time.

e The sealing efficiency degrades when the pore radius is greater
than 1 nm.

e Sealing efficiency will improve if the pore radius standard
deviation can be maintained low.
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