SIMULATION OF POROUS LOW-*k* DIELECTRIC SEALING BY COMBINED He AND NH₃ PLASMA TREATMENT^{*}

Juline Shoeb^{a)} and Mark J. Kushner^{b)}

^{a)} Department of Electrical and Computer Engineering lowa State University, Ames, IA 50011 jshoeb@eecs.umich.edu

^{b)} Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Ann Arbor, MI 48109 mjkush@umich.edu

http://uigelz.eecs.umich.edu

ICOPS, June 2009

*Work supported by Semiconductor Research Corporation

JULINE_ICOPS09_01

AGENDA

- Low-*k* Dielectrics
- Modeling Platforms
- Modeling of Porous Low-*k* Sealing
 - Goals and Premises for Sealing Mechanism
- Sealing Mechanism
 - Surface Site Activation by He plasma pre-treatment
 - Sealing by Ar/NH₃ Treatment
- Sealing Efficiency Dependence
 - Porosity and Interconnectivity
 - Treatment time and Pore Radius
- Concluding Remarks

POROUS LOW-*k* **DIELECTRIC**

- Metal interconnect lines in ICs run through dielectric insulators.
- The capacitance of the insulator contributes to *RC* delays.
- Porous oxides, such as C doped SiO₂ (with CH_n lining pores) have a low dielectric constant which reduces the RC delay.
- Porosity is ≤ 0.5. Interconnected pores open to surface offer pathways to degrade *k*-value by reactions.

Ref: http://www.necel.com/process/en/images/porous_low-k_e.gif

GOALS AND PREMISES OF SEALING MECHANISM

- To prevent the degradation of lowk materials pores open to the surface has to be sealed.
- He followed by NH₃ plasma treatment has been shown to seal the pores.
 - He⁺ and photons break Si-O bonds while knocking off H atom from CH_n.

Plasma	Treatment Time (s)	Function
He	20	Surface Activation
NH ₃	20 (Post-He)	Sealing

- Subsequent NH₃ exposure seals the pores by adsorption reactions forming C-N and Si-N bonds.
- Experimental results from the literature were used to build the sealing mechanism.

Ref: A. M. Urbanowicz, M. R. Baklanov, J. Heijlen, Y. Travaly, and A. Cockburn, Electrochem. Solid-State Lett. 10, G76 (2007).

MODELING : LOW-*k* **PORE SEALING**

- Hybrid Plasma
 Equipment Model (HPEM)
- Plasma Chemistry Monte Carlo Module (PCMCM)
- Monte Carlo Feature Profile Model (MCFPM)

HYBRID PLASMA EQUIPMENT MODEL (HPEM)

Carlo Radiation • SCM (Surface Transport Module) Chemistry Mo

Chemistry Module) University of Michigan Institute for Plasma Science & Engr.

MONTE CARLO FEATURE PROFILE MODEL (MCFPM)

- The MCFPM resolves the surface topology on a 2D Cartesian mesh to predict etch profiles.
- Each cell in the mesh has a material identity. (Cells are 4 x 4 A).
- Gas phase species are represented by Monte Carlo pseudoparticles.
- Pseuodoparticles are launched towards the wafer with energies and angles sampled from the distributions obtained from the PCMCM.
- Cells identities changed, removed, added for reactions, etching deposition.

INITIAL LOW-*k* **PROFILE FOR SIMULATION**

- 80 nm wide and 30 nm thick porous SiO₂
- CH₃ groups line the pores
- Average pore radius: 0.8-1.4 nm
- Pores open to surface need to be sealed
- Will be exposed to successive He and NH₃ plasmas.

SURFACE ACTIVATION IN He PLASMA

- He⁺ and photons break Si-O bonds and removes H from CH₃ groups.
- $\begin{array}{lll} \bullet \mbox{ Bond Breaking } & \mbox{He}^{*}(g) + SiO_{2}(s) \rightarrow SiO(s) + O(s) + \mbox{He}(g) \\ & \mbox{He}^{*}(g) + SiO(s) \rightarrow Si(s) + O(s) + \mbox{He}(g) \\ & \mbox{hv} + SiO_{2}(s) & \rightarrow SiO(s) + O(s) \\ & \mbox{hv} + SiO(s) & \rightarrow Si(s) + O(s) \\ & \mbox{hv} + SiO(s) & \rightarrow Si(s) + O(s) \\ & \mbox{He}^{*}(g) + CH_{n}(s) & \rightarrow CH_{n-1}(s) + \mbox{H}(g) + \mbox{He}(g) \\ & \mbox{hv} + CH_{n-1}(s) & \rightarrow CH_{n-2}(s) + \mbox{H}(g) + \mbox{He}(g) \\ & \mbox{hv} + CH_{n-1}(s) & \rightarrow CH_{n-2}(s) + \mbox{H}(g) \\ & \mbox{hv} + CH_{n-1}(s) & \rightarrow CH_{n-2}(s) + \mbox{H}(g) \\ & \mbox{hv} + CH_{n-1}(s) & \rightarrow CH_{n-2}(s) + \mbox{H}(g) \\ & \mbox{hv} + CH_{n-1}(s) & \rightarrow CH_{n-2}(s) + \mbox{H}(g) \\ & \mbox{hv} + CH_{n-1}(s) & \rightarrow CH_{n-2}(s) + \mbox{H}(g) \\ & \mbox{hv} + CH_{n-1}(s) & \mbox{H}(g) \\ & \mbox{hv} + CH_{n-2}(s) + \mbox{hv} + \m$
- Reactive sites assist sealing in the subsequent Ar/NH₃ treatment.

SEALING MECHANISM IN Ar/NH₃ PLASMA

- N/NH_x species are adsorbed by activated sites forming Si-N and C-N bonds to seal pores.
- Further Bond Breaking $M^+(g) + SiO_2(s) \rightarrow SiO(s) + O(s) + M(g)$
 - $M^+(g) + SiO(s) \rightarrow Si(s) + O(s) + M(g)$
- - $NH_x(g) + CH_n(s) \rightarrow CH_nNH_x(s)$

 $NH_x(g) + C(s) \rightarrow CNH_x(s)$

 SiNH_x-NH_y/CNH_x-NH_y compounds help seal the pores where end nitrogens are bonded to either Si or C atom by Si-C/Si-N bond

 $NH_{v}(g) + SiNH_{x}(s) \rightarrow SiNH_{x}-NH_{v}(s)$

 $NH_y(g) + CNH_x(s) \rightarrow CNH_x-NH_y(s)$

- He⁺ and photons in He plasma break Si-O bonds and activate CH_n groups.
- He Plasma Species:

He He* He* hv e

- $Ar/NH_3 = 25/75$ treatment seals the surface pores.
- Ar/NH₃ Plasma Species:

Ar	Ar*	Ar ⁺	е	
NH ₃	NH_2	NH	Н	Ν
NH ₃ ⁺	NH_2^+	NH_4^+	NH ⁺	

- lon density: 3.8 x 10¹⁰ cm^{-3.}
- Porous low-k was exposed for 30s to the plasma.
- 20V substrate bias assisted ablating H and Si-O bond breaking.
- Conditions: He, 10 mTorr, 300 W ICP, 20V Bias

Ar/NH₃ PLASMAS

- Total ion density: 1.0x 10¹¹ cm⁻³
- Ion densities (cm⁻³): $NH_3^+ 2.6 \times 10^{10}$ $NH_4^+ 2.9 \times 10^{10}$ $NH_2^+ 1.0 \times 10^{10}$ $NH^+ 1.4 \times 10^{09}$ $H^+ 1.6 \times 10^{10}$
- Neutral densities (cm⁻³):

NH ₃	5.30 x 10 ¹³
NH ₂	2.40 x 10 ¹³
NH	1.6 x 10 ¹²
Ν	2.4 x 10 ¹²
Ar	6.0 x 10 ¹²

Conditions: Ar/NH₃ = 25/75, 10 mTorr, 300 W ICP

PORE-SEALING BY SUCCESSIVE He AND NH₃/Ar TREATMENT

- Surface pore sites are activated by 30s He plasma treatment.
- Successive 20s NH₃ treatment seals the pores forming Si-N and Si-C bonds.

Animation Slide-GIF

SEALING: POROSITY AND INTERCONNECTIVITY

- Sealing efficiency is independent of porosity and interconnectivity, optimizing at 75-80%
- With higher porosity, the number of open pores to the surface increases.
- If pore radius remains the same, sealing efficiency is constant.
- With higher porosity but a fixed pore radius, number of surface pores increases.
- The fixed probabilities of C-N, Si-N and N-N bond formation result in a constant sealing efficiency.

SEALING: TREATMENT TIME DEPENDENCE

- Without He plasma treatment, Ar/NH₃ plasmas seal only 45% of pores.
- NH_x ions are unable to activate all the surface sites to complete the sealing.
- Sealing efficiency increases with He treatment time for 30s, then saturates.
- 30s treatment breaks all surface Si-O bonds and activates all surface CH₃ groups.
- Sealing efficiency of pores increases for 20s of Ar/NH₃ treatment, then saturates – all dangling bonds on the surface are passivated.

Institute for Plasma Science & Engr.

SEALING: He TREATMENT TIME DEPENDENCE

- He plasma is responsible for Si-O bond breaking and removing H from CH₃ groups to create reactive sites.
- Increasing He plasma treatment time increases sealing efficiency until all of the surface sites are activated.

SEALING: Ar/NH₃ TREATMENT TIME DEPENDENCE

- NH_x species are adsorbed by reactive sites produced by He plasma to form Si-C and Si-N bonds.
- 80% of surface pores are sealed within 20s...all surface activated sites are passivated by C-N/Si-N bonds.

Animation Slide-GIF

SEALING EFFICIENCY: PORE RADIUS

- Sealing efficiency decreases with increasing pore size.
- Sealing efficiency drops below 70% as for pore radius > 1.0 nm.
- C-N and Si-N are "first bonds."
- Sealing requires N-N bonding, which has limited extent.
- Too large a gap prevents sealing.

JULINE_ICOPS09_19

CONCLUDING REMARKS

- Simulation of porous low-k material sealing was investigated employing successive He and NH₃ plasma treatment.
- Si-N and C-N bonds formed by adsorption on active sites followed by one N-N bond linking C or Si atoms from opposite pore walls.
- Pore sealing efficiency is independent of porosity and interconnectivity, while dependent on both He and NH₃ plasma treatment time.
- The sealing efficiency degrades when the pore radius is greater than 1 nm.
- Sealing efficiency will improve if the pore radius standard deviation can be maintained low.