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AGENDA

• Implanting, mixing and photoresist (PR) erosion

• Processes

• Molecular ion dissociation on surfaces

• Small ion penetration and mixing

• PR cross-linking

• Description of Model

• Scaling of Mixing and Implantation

• Concluding Remarks
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• Small ions accelerated by the sheath implant into the wafer 
surface forming weakly bonded or interstitially trapped species.

• Implanting causes surface mixing which produces damage 
during plasma etching.
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IMPLANTATION AND MIXING DURING PLASMA ETCHING



• Photoresist defines the features to be etched 
– usually a hydrocarbon polymer. 

• PR is sputtered by energetic ions. Frag-
mented PR segments are more easily eroded.

• Profile of high aspect ratio (HAR) features 
can be modified due to PR erosion.
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• Consequences of implantation and mixing are poorly 
characterized in modeling of plasma etching. 

• Usually only included in compute-intensive molecular 
dynamics simulations.

• Incorporate implantation, mixing, and sputtering into 
Monte-Carlo Feature Profile Model  coupled to equipment 
scale plasma models.

• Investigate:
• Scaling of implantation, mixing, and etching selectivity.
• Degradation and cross-linking of PR surface due to 

energetic bombardment.

• Goals
• Characterize mixing damage during etching.
• Develop strategies to preserve pattern transferring 

while minimizing damage.
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APPROACHES AND GOALS OF INVESTIGATION



DESCRIPTION OF MODEL
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Within one cell:  εout= εin exp(-λa/λ)
Where εin = incident energy; εout = left energy.

λa    = Actual length that the particle travels.
λ = Calculated stopping range f(εin).

*n = mixing step; N = allowed maximum mixing step.

IMPLANTATION MODEL

*R = Random number
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• Etching of SiO2 is dominantly through a formation of a 
fluorocarbon complex.

• SiO2(s) + CxFy
+(g) → SiO2*(s) + CxFy(g)

• SiO2*(s) + CxFy(g) → SiO2CxFy(s)

• SiO2CxFy (s) + CxFy
+(g) → SiFy(g) + CO2 (g) + CxFy(g) 

• Further deposition by CxFy(g) produces thicker polymer layers.

• Example reaction of surface dissociation.
• M(s) + CxFy

+(g) → M(s) + Cx-1Fy-1(g) + C(g) + F(g)

• Sputtering of PR and redeposition.
• PR(s) + Ar+(g) → PR2(s) + Ar(g) + H(g) + O(g)

• PR(s) + CxFy
+(g) → PR(s) + CxFy(g) 

• PR(g) + SiO2CxFy(s) → SiO2CxFy(s) + PR(s)

SURFACE REACTION MECHANISM
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*PR2 = cross-linked PR



FLUOROCARBON ETCHING OF SiO2

• Plasma tends to be edge 
peaked due to electric field 
enhancement.

• Plasma densities in excess 
of 1011 cm-3.

• Ar/C4F8/O2 = 80/15/5, 300 sccm, 
40 mTorr, RF 1 kW at 10 MHz, 
DC 200 W/-250 V.

• DC augmented single frequency 
capacitively coupled plasma (CCP) 
reactor. 

• DC: Top electrode     RF: Substrate
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ION ENERGY ANGULAR DISTRIBUTIONS (IEADs)

• Peak of ion energy ranges from 300 to 1200 eV 
for 1 – 4 kW bias power.

• Angle distribution spreads from -10 to 10 degree .
• Stopping range ranges from 0 to 70 Å.
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STOPPING RANGE IN PR, POLYMER, Si, AND SiO2

• Stopping range increases with increasing energy.

• At specific energy, implanting depth:

PR(PMMA*) > SiO2 > Si > Polymer

*PMMA = Polymethylmethacrylate

• Data from SRIM (the Stopping and Range of Ion 
in Matter)

Stopping range λ = f(εincident)
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(a)

(b)
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• Etch rates, degree 
of mixing and depth 
of implantation 
increase with bias 
power. 

IMPLANTING AND MIXING DEPTH vs BIAS POWER

• After 5 s 

• After same etch 
level 
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IMPLANTING AND MIXING DEPTH vs ENERGY

• Only polymer deposition occurs at 1 eV.

• Sputtering, implanting and deposition coexist at 10 eV.

• Depth of implantation and mixing increases with increasing ion 
energy (100 eV~10 keV).



3 nm

30 nm

University of Michigan
Institute for Plasma Science & Engr.MINGMEI_ICOPS09_14

ETCHING SELECTIVITY

• Ar/C4F8/O2 = 80/15/5, 4 kW, 300sccm, 40mTorr, DC 200W/-250V.

• Etch stop occurs at 
Si surface due to 
low reaction rate 
with CFx.

• Etching selectivity 
for SiO2/PR(PMMA) 
is around 10.

• The roughness of  
SiO2 surface is due 
to non-uniform 
polymer deposition. 

Micro-masking                Micro-trenching



Structure of PR(PMMA)
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• PR molecule is degraded due to energetic ion sputtering.
• Degraded PR segments are more easily eroded.
• Newly formed dangling bonds are recombined (cross-linking), 

and cross-linked PR forms a “hard crust”.
• Sputtering yield is calculated using SRIM.

MECHANISM FOR DEGRADATION AND 
CROSS-LINKING OF PR
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Broken Bond

DEGRADATION OF PR (SPUTTERING)
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New Bond
Broken Bond

INTER-MOLECULE CROSS-LINKING
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New Bond
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• Etching rate for SiO2 increases with increasing ion energy.

• Balance between sputtering and cross-linking (more resistive to etching) 
on PR(PMMA) surface results in similar etching rate for all energies.

• Surface roughness of SiO2 increases as etching proceeds due to micro-
masking.

• Etching selectivity (SiO2/PR):   100 eV, 6;  500 eV, 18;  1000 eV, 23. 

ETCHING SELECTIVITY vs ENERGY

(a) (b) (c)
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ETCHING SELECTIVITY vs RF BIAS POWER

• At similar etching level of PR, 
aspect ratio (AR) of the trench 
increases with bias power.

• Etching selectivity increases 
when PR is cross-linked.

• Si is damaged during over-
etch by implantation and 
mixing.

• Ar/C4F8/O2 = 80/15/5, 300 sccm, 40 mTorr, 
10 MHz, DC 200 W/-250 V.
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CONCLUDING REMARKS

• Algorithms have been incorporated into the MCFPM to predict 
implanting and mixing.

• Depth of implanting and mixing increases with increasing 
bias power and ion energy.

• More damage is obtained at higher etching rate.

• PR surface is cross-linked due to sputtering.

• At higher bias power and ion energy, etching selectivity 
for SiO2/PR is better.

• Strategies to be developed for high power processing: 

• Protect pattern transferring at higher etching rate.

• Reduce damage during over-etch.


