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Optimization of multiple frequency plasma etching reactors

Description of the model

Scaling with:
e Pressure

e Electrode separation

Concluding remarks
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MULTI-FREQUENCY PLASMA ETCHING REACTORS

High Frequency

e State of the art plasma etching =
reactors use multiple frequencies 10s-100s MHz
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e Voltage finds its way into the
plasma propagating around Plasma

electrodes (not through them).

* Ref: S. Rauf, AMAT University of Michigan
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WAVE EFFECTS
CHALLENGE SCALING
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e As wafer size and frequencies increase - and wavelength decreases,
“electrostatic” applied voltage takes on wavelike effects.

e Plasma shortened wavelength: A =ﬂo/(l+A/s)”2
A = min(half plasma thickness, skin depth), s = sheath thickness

Lieberman, et al PSST 11 (2002) : : —
A. Perret, APhL 83 (2003) University of Michigan
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AN EXAMPLE: ADJUSTABLE GAP CONTROL

Mask open Etch dielectric 1 Etch dielectric 2
(RN T——— O—
Large gap Small gap Medium gap
PR
ARC
Carbon
organic
Oxide——

SiN
Silicon—="

e Adjusting the gap (electrode separation) of capacitively coupled
plasmas (CCPs) enables customization of the radical fluxes.

e Enables different processes, such as mask opening and trench
etching, to be separately optimized.

V. Vahedi, M. Srinivasan, A. Bailey, Solid State

Technology, 51, November, 2008. University of Michigan
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COUPLED EFFECTS IN HIGH FREQUENCY CCPs

e Electromagnetic wave effects impact processing uniformity
In high frequency CCPs.

e When coupled with changing gap and pressure, controlling
the plasma uniformity could be more difficult.

e Results from a computational investigation of impacts of
pressure and gap on plasma uniformity in dual frequency
CCPs (DF-CCPs) will be discussed.

University of Michigan
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HYBRID PLASMA EQUIPMENT MODEL (HPEM)

Electron Energy
Transport
Module

Te,S,u l TE, N

Fluid
Kinetics Module
Fluid equations
(continuity,
momentum,
energy)
Maxwell
Equations

v

Plasma Chemistry
Monte Carlo
Module
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e Electron Energy Transport Module:

e Electron Monte Carlo Simulation
provides EEDs of bulk electrons

e Separate MCS used for secondary,
sheath accelerated electrons

e Fluid Kinetics Module:

e Heavy particle and electron
continuity, momentum, energy

e Maxwell’s Equations
e Plasma Chemistry Monte Carlo Module:
e |[EADs onto wafer

University of Michigan
Institute for Plasma Science & Engr.



METHODOLOGY OF THE MAXWELL SOLVER

e Full-wave Maxwell solvers are challenging due to coupling
between electromagnetic (EM) and sheath forming electrostatic
(ES) fields.

e EM fields are generated by rf sources and plasma currents
e ES fields originate from charges.

e \We separately solve for EM and ES fields and sum the fields for
plasma transport.

— —

E=E., VO

e Boundary conditions (BCs):
e EM field: Determined by rf sources.

e ES field: Determined by blocking capacitor (DC bias) or
applied DC voltages.

University of Michigan
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REACTOR GEOMETRY

6 ¢ HF Cable
E i —
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e 2D, cylindrically symmetric.
e Base conditions
e Ar/CF, =90/10, 400 sccm

e High frequency (HF) upper electrode:
150 MHz, 300 W

e Low frequency (LF) lower electrode:
10 MHz, 300 W

e Specify power, adjust voltage.

e Main species in Ar/CF,
mixture

e Ar, Ar*, Ar*

« CF,, CF,, CF,, CF, C,F,,
C,Fe F, F,

o CF;*, CF,*, CF*, F*
oe, CH;, F

University of Michigan
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Ar PLASMA IN SINGLE FREQUENCY CCP
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e With increasing Ar pressure,
electron density transitions from
center high to edge high.

o Agrees with experimental trend, g
albeit in a different geometry. S -
. . 2 i |
e DF-CCP at higher frequency, with =0~ o~~~ 5
electronegative gas...trends? Radius (cm)

e Ar, 100 MHz/750 W from upper electrode.
V. N. Volynets, et al., J. Vac. Sci.
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EM EFFECTS: FIELD IN SHEATHS
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e Low frequency — electrostatic edge effect.

e High Frequency — Constructive interference of waves in center of
reactor.

Min se—— M X University of Michigan
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SCALING WITH PRESSURE IN DF-CCP

6° 10 mTorr, Max =2.5x 1010 cm-3

[

e With increasing pressure:
e Concurrent increase in [e].

e Shift in maximum of [e] towards
the HF electrode and the center
of the reactor.

e The shift is a result of

e Shorter energy relaxation
distance.

e Combination of finite

= | I wavelength and skin effect.
0 10 20

e 150 mTorr, Max =1.6 x 1011 cm-3

£
= e Ar/CF,=90/10 e HF: 150 MHz/300 W
5 — e 400 sccm e LF: 10 MHz/300 W
oo |
0 10 20 . . —
Radius (cm) University of Michigan
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ELECTRON ENERGY DISTRIBUTIONS (EEDSs)

e 10 mTorr

Energy (eV)

e d =distance to the upper electrode.
e EEDF as a function of height:
e 10 mTorr — no change in bulk plasma with tail lifted in sheath.
e 150 mTorr — Tails of EEDs lift as HF electrode is approached.
e Produce different spatial distribution of ionization sources.

e Ar/CF,=90/10
e 400 sccm

YY_MJIK_ICOPS2009_13

e HF: 150 MHz/300 W
e LF: 10 MHz/300 W

,® 150 mTorr

r=5cm
L d=0.1cm 4
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ELECTRON IMPACT IONIZATION SOURCE (S,)

e Axial Direction e Radial Direction (In the HF Sheath)
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e With increasing pressure:
e Axial direction: Energy relaxation distance decreases and so

sheath heating is dissipated close to electrode — transition to net
attachment.

o Radial direction: As energy relaxation distance decreases, S,
mirrors the constructively interfered HF field - more center peaked.

e Ar/CF,=90/10 e HF: 150 MHz/300 W

e 400 sccm e LF: 10 MHz/300 W University of Michigan
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ION FLUX INCIDENT ON WAFER

e Flux of Ar* e Flux of CF;*
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e With increasing pressure, ionization source increases but moves
further from wafer..

e Ar*flux is depleted by charge exchange reactions while diffusing
to wafer — and is maximum at 25-50 mTorr.

e Ar/CF,=90/10 e HF: 150 MHz/300 W

e 400 sccm e LF: 10 MHz/300 W University of Michigan
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TOTAL ION IEADs INCIDENT ON WAFER: Ar/CF, = 90/10

6_—|
- Center Edge o
3_r A N\ 7~ A N
; ]
O 10 20
e 10 mTorr e 150 mTorr
e Center o Edge e Center e Edge
20077 200 T 2007 2001
150 - 150 - 150 150F -
S S
100 100 - 100 100
3] 3] | '
c c
L L

SO XM,

0

L1 1
-10 0 10

Angle (deg)

30

0

L1 1
-10 0 10

Angle (deg)

YY_MJK_ICOPS2009_16

50

0

Angle (deg)

L1 1
-10 0 10

0

50 8

L1 1
-10 0 10

IEADs are separately
collected over center
and edge of wafer.

Bimodal to single peak
transition with
Increasing pressure.

10 mTorr: uniform

250 mTorr: larger radial
variation.

e Ar/CF,=90/10, 400 sccm
e HF: 150 MHz
e LF: 10 MHz/300 W

Angle (deg)

University of Michigan
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SCALING WITH PRESSURE: Ar/CF, =80/20
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e With increasing pressure:
e [e] decreases from 50 to 150

mTorr owing to increasing
attachment losses.

o Maximum of [e] still shifts
towards the HF electrode and the
reactor center...a less dramatic

shift than Ar/CF,=90/10.

dominant due to lower
conductivity.

Electrostatic component remains

6. 150 mTorr, Max = 4.2 x 1019 ¢cm-3

e Ar/CF,=80/20

L

e 400 sccm

Height (cm)

l
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10

Radius (cm)
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e HF: 150 MHz/300 W
e LF: 10 MHZz/300 W

20

s = w memm [3Xx
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ION FLUX INCIDENT ON WAFER: Ar/CF, =80/20

e Flux of Ar* e Flux of CF;*
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e Compared with Ar/CF, = 90/10...

e More rapid depletion of Ar* flux by charge exchange.

o CF;* flux also maximizes at intermediate pressure —
consequence of more confined plasma.

e Ar/CF,=80/20 e HF: 150 MHz/300 W

e 400 sccm e LF: 10 MHz/300 W University of Michigan
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Energy (eV)

TOTAL ION IEADs INCIDENT ON WAFER: Ar/CF, = 80/20
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SCALING WITH GAP: Ar/CF, =90/10

e With increasing gap:

e [e] increases as diffusion length
increases and loss decreases.

e Edge peaked [e] at gap = 1.5
cm, due to electrostatic edge
effect.

e Maximum of [e] shifts towards
the HF electrode.

e For gap > 2.5 cm, radial [e] profile
IS not sensitive to gap.

e Electrode spacing exceeds energy
relaxation length and power
deposition mechanism does not
change.

e Ar/CF,=90/10 e HF: 150 MHz/300 W

e 50 mTorr, 400 sccm e LF: 10 MHz/300 W
| ] Min ———— e g X

|
o 10 0 University of Michigan

Institute for Plasma Science & Engr.
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EEDs vs GAP

e Gap =5.5cm
0 | |

Energy (eV) Energy (eV)

5 3 (HF sheath) e 2.5cm: Little change across bulk plasma; tail in
5 ? (LF Sheath) LF sheath lifted owing to HF wave penetration.
q) . =
T e 5.5cm: Systematic tail enhancement towards

e Ar/CF,=90/10 the HF electrode — larger separation between

e 50 mTorr, 400 sccm I—_IF and LF waves, system functions more

e HF: 150 MHz/300 W linearly.

e LF: 10 MHZz/300 W . - —
University of Michigan

YY_MJK_ICOPS2009_21 Institute for Plasma Science & Engr.



ION FLUX INCIDENT ON WAFER

e Flux of Ar* e Flux of CF;*
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e 1.5 cm: edge peaked flux due to electrostatic edge effect.

e 2.5-5.5 cm: middle peaked flux due to electrostatic and wave
coupling.

o
N
LY

e 6.5 cm: center peaked flux ( with a middle peaked [e] ): edge effect
reduced at larger gap.

e Ar/CF,=90/10 e HF: 150 MHz/300 W

e 50 mTorr, 400 sccm e LF: 10 MHz/300 W University of Michigan
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TOTAL ION IEADs INCIDENT ON WAFER vs GAP

e Narrow gap has large
center-to-edge non-
uniformity due to
change in sheath width.

Narrower sheath near
edge produces broaded
IEAD.

Large gap enables more
diffusive and uniform

sheath properties —and
so more uniform IEADSs.

e Ar/CF,=90/10, 50 mTorr, 400 sccm
e HF: 150 MHz/300W
e LF: 10 MHz/300 W

University of Michigan
Institute for Plasma Science & Engr.



CONCLUDING REMARKS

e For DF-CCPs sustained in Ar/CF,=90/10 mixture with HF = 150 MHz:

e With increasing pressure, maximum of ionization source (S,)
shifts towards the HF electrode as energy relaxation distance
decreases.

e S_ mirrors EM field, which is center peaked from constructive
Interference and [e] profile transitions from edge high to center
high.

e Increasing fraction of CF, to 20% results in more uniform ion
fluxes and IEADs incident on wafer.

o Effects of gap size in Ar/CF,=90/10 mixture:

e Between 2.5 and 6.5 cm, [e] profile is not sensitive to gap size
since larger than energy relaxation distance.

e Small gaps have more edge-to-center non-uniformity in IEADs
due to strong edge effects.

University of Michigan
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