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AGENDA

• Optimization of multiple frequency plasma etching reactors

• Description of the model

• Scaling with:

• Pressure 

• Electrode separation

• Concluding remarks
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MULTI-FREQUENCY PLASMA ETCHING REACTORS

• State of the art plasma etching 
reactors use multiple frequencies 
to create the plasma and 
accelerate ions into the wafer.

• Voltage finds its way into the 
plasma propagating around 
electrodes (not through them).

• Ref: S. Rauf, AMAT University of Michigan
Institute for Plasma Science & Engr.YY_MJK_ICOPS2009_03



WAVE EFFECTS
CHALLENGE SCALING

Lieberman, et al PSST 11 (2002)
A. Perret, APhL 83 (2003)
http://mrsec.wisc.edu

University of Michigan
Institute for Plasma Science & Engr.

• As wafer size and frequencies increase - and wavelength decreases, 
“electrostatic” applied voltage takes on wavelike effects.

• Plasma shortened wavelength: 
∆ = min(half plasma thickness, skin depth), s = sheath thickness

( ) 2/1
0 s1 ∆λλ +=
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AN EXAMPLE: ADJUSTABLE GAP CONTROL

• Adjusting the gap (electrode separation) of capacitively coupled
plasmas (CCPs) enables customization of the radical fluxes. 

• Enables different processes, such as mask opening and trench 
etching, to be separately optimized.

V. Vahedi, M. Srinivasan, A. Bailey, Solid State 
Technology, 51, November, 2008. University of Michigan
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• Electromagnetic wave effects impact processing uniformity 
in high frequency CCPs.

• When coupled with changing gap and pressure, controlling 
the plasma uniformity could be more difficult.

• Results from a computational investigation of impacts of 
pressure and gap on plasma uniformity in dual frequency 
CCPs (DF-CCPs) will be discussed.

COUPLED EFFECTS IN HIGH FREQUENCY CCPs

University of Michigan
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HYBRID PLASMA EQUIPMENT MODEL (HPEM)

• Electron Energy Transport Module:
• Electron Monte Carlo Simulation 

provides EEDs of bulk electrons
• Separate MCS used for secondary, 

sheath accelerated electrons 
• Fluid Kinetics Module:

• Heavy particle and electron     
continuity, momentum, energy

• Maxwell’s Equations
• Plasma Chemistry Monte Carlo Module:

• IEADs onto wafer
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University of Michigan
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• Full-wave Maxwell solvers are challenging due to coupling 
between electromagnetic (EM) and sheath forming electrostatic 
(ES) fields.

• EM fields are generated by rf sources and plasma currents
• ES fields originate from charges.
• We separately solve for EM and ES fields and sum the fields for 

plasma transport.

• Boundary conditions (BCs):
• EM field:  Determined by rf sources.
• ES field:  Determined by blocking capacitor (DC bias) or 

applied DC voltages.

ESEMEE Φ∇−=
vv

METHODOLOGY OF THE MAXWELL SOLVER

University of Michigan
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REACTOR GEOMETRY

• 2D, cylindrically symmetric.
• Base conditions

• Ar/CF4 =90/10, 400 sccm
• High frequency (HF) upper electrode: 

150 MHz, 300 W
• Low frequency (LF) lower electrode: 

10 MHz, 300 W
• Specify power, adjust voltage.

• Main species in Ar/CF4 
mixture
•Ar, Ar*, Ar+

•CF4, CF3, CF2, CF, C2F4, 
C2F6, F, F2

•CF3
+, CF2

+, CF+, F+

• e, CF3
-, F-

YY_MJK_ICOPS2009_09

University of Michigan
Institute for Plasma Science & Engr.



• 10 mTorr, Max = 9.6 x 109 cm-3

• [e]

Ar PLASMA IN SINGLE FREQUENCY CCP

• 50 mTorr, Max = 4.3 x 1010 cm-3

YY_MJK_ICOPS2009_10

• With increasing Ar pressure, 
electron density transitions from 
center high to edge high.

• Agrees with experimental trend, 
albeit in a different geometry.

• DF-CCP at higher frequency, with 
electronegative gas…trends?

V. N. Volynets, et al., J. Vac. Sci. 
Technol. A 26, 406, 2008.

• Ar, 100 MHz/750 W from upper electrode.

• 80 mTorr, Max = 1.5 x 1011 cm-3

University of Michigan
Institute for Plasma Science & Engr.



EM EFFECTS: FIELD IN SHEATHS
• HF = 50 MHz, Max = 410 V/cm

• HF = 150 MHz, Max = 355 V/cm

• Low frequency – electrostatic edge effect.
• High Frequency – Constructive interference of waves in center of 

reactor.

• Ar/CF4=90/10, 50 mTorr, 400 sccm
• HF: 300 W, LF: 10 MHz/300 W

University of Michigan
Institute for Plasma Science & Engr.

• LF = 10 MHz, Max = 750 V/cm
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SCALING WITH  PRESSURE IN DF-CCP
• 10 mTorr, Max = 2.5 x 1010 cm-3

• 50 mTorr, Max = 1.1 x 1011 cm-3

• 75 mTorr, Max = 1.2 x 1011 cm-3

• 150 mTorr, Max = 1.6 x 1011 cm-3

• With increasing pressure:
• Concurrent increase in [e].
• Shift in maximum of [e] towards 

the HF electrode and the center 
of the reactor.

• The shift is a result of 
• Shorter energy relaxation 

distance.
• Combination of finite 

wavelength and skin effect.

• Ar/CF4=90/10
• 400 sccm

• HF: 150 MHz/300 W
• LF: 10 MHz/300 W
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ELECTRON ENERGY DISTRIBUTIONS (EEDs)

• d = distance to the upper electrode.
• EEDF as a function of height:

• 10 mTorr — no change in bulk plasma with tail lifted in sheath.
• 150 mTorr — Tails of EEDs lift as HF electrode is approached.

• Produce different spatial distribution of ionization sources. 
• Ar/CF4=90/10
• 400 sccm

• HF: 150 MHz/300 W
• LF: 10 MHz/300 W

YY_MJK_ICOPS2009_13
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• 150 mTorr• 10 mTorr



ELECTRON IMPACT IONIZATION SOURCE (Se)

• With increasing pressure: 
• Axial direction: Energy relaxation distance decreases and so 

sheath heating is dissipated close to electrode – transition to net 
attachment. 

• Radial direction: As energy relaxation distance decreases, Se
mirrors the constructively interfered HF field - more center peaked.

• Ar/CF4=90/10
• 400 sccm

• HF: 150 MHz/300 W
• LF: 10 MHz/300 W

YY_MJK_ICOPS2009_14
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• Radial Direction (In the HF Sheath)• Axial Direction



ION FLUX INCIDENT ON WAFER

• With increasing pressure, ionization source increases but moves 
further from wafer..

• Ar+ flux is depleted by charge exchange reactions while diffusing 
to wafer – and is maximum at 25-50 mTorr. 

• Flux of CF3
+• Flux of Ar+

• Ar/CF4=90/10
• 400 sccm

• HF: 150 MHz/300 W
• LF: 10 MHz/300 W

YY_MJK_ICOPS2009_15

University of Michigan
Institute for Plasma Science & Engr.



Center Edge

• 10 mTorr
• Center • Center• Edge • Edge

• IEADs are separately 
collected over center 
and edge of wafer.

• Bimodal to single peak 
transition with 
increasing pressure.

• 10 mTorr: uniform
• ≥50 mTorr: larger radial 

variation.

• Ar/CF4=90/10, 400 sccm
• HF: 150 MHz
• LF: 10 MHz/300 W

• 150 mTorr
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University of Michigan
Institute for Plasma Science & Engr.

TOTAL ION IEADs INCIDENT ON WAFER: Ar/CF4 = 90/10



SCALING WITH  PRESSURE: Ar/CF4 =80/20
• 10 mTorr, Max = 2.5 x 1010 cm-3

• 50 mTorr, Max = 4.8 x 1010 cm-3

• 100 mTorr, Max = 4.5 x 1010 cm-3

• 150 mTorr, Max = 4.2 x 1010 cm-3

• With increasing pressure:
• [e] decreases from 50 to 150 

mTorr owing to increasing 
attachment losses.

• Maximum of [e] still shifts 
towards the HF electrode and the 
reactor center…a less dramatic 
shift than Ar/CF4=90/10.

• Electrostatic component remains 
dominant due to lower 
conductivity.

• Ar/CF4=80/20
• 400 sccm

• HF: 150 MHz/300 W
• LF: 10 MHz/300 W
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University of Michigan
Institute for Plasma Science & Engr.



ION FLUX INCIDENT ON WAFER: Ar/CF4 =80/20

• Compared with Ar/CF4 = 90/10…
• More rapid depletion of Ar+ flux by charge exchange.
• CF3

+ flux also maximizes at intermediate pressure —
consequence of more confined plasma.

• Flux of CF3
+• Flux of Ar+

• Ar/CF4=80/20
• 400 sccm

• HF: 150 MHz/300 W
• LF: 10 MHz/300 W
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Center Edge

• 10 mTorr
• Center • Center• Edge • Edge

• At Ar/CF4 =80/20 plasma 
is peaked near HF 
electrode edge, and 
largely uniform over the 
surface of wafer.

• Improved uniformity of 
IEADs at all pressures.

• Ar/CF4=80/20, 400 sccm
• HF: 150 MHz
• LF: 10 MHz/300 W

• 150 mTorr
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TOTAL ION IEADs INCIDENT ON WAFER: Ar/CF4 = 80/20



SCALING WITH GAP: Ar/CF4 =90/10
• Gap = 1.5 cm, Max = 3.4 x 1010 cm-3

• 2.5 cm, Max = 1.1 x 1011 cm-3

• With increasing gap:
• [e] increases as diffusion length 

increases and loss decreases.
• Edge peaked [e] at gap = 1.5 

cm, due to electrostatic edge 
effect.

• Maximum of [e] shifts towards 
the HF electrode.

• For gap > 2.5 cm, radial [e] profile 
is not sensitive to gap.

• Electrode spacing exceeds energy 
relaxation length and power 
deposition mechanism does not 
change.

• Ar/CF4=90/10
• 50 mTorr, 400 sccm

• HF: 150 MHz/300 W
• LF: 10 MHz/300 W

• 3.5 cm, Max = 1.5 x 1011 cm-3

• 5.5 cm, Max = 1.6 x 1011 cm-3
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• 2.5 cm:  Little change across bulk plasma; tail in 
LF sheath lifted owing to HF wave penetration.

• 5.5 cm:  Systematic tail enhancement towards 
the HF electrode — larger separation between 
HF and LF waves, system functions more 
linearly.

• Ar/CF4=90/10
• 50 mTorr, 400 sccm
• HF: 150 MHz/300 W
• LF: 10 MHz/300 W

YY_MJK_ICOPS2009_21
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• Gap = 5.5 cm• Gap = 1.5 cm

EEDs vs GAP



ION FLUX INCIDENT ON WAFER

• 1.5 cm: edge peaked flux due to electrostatic edge effect.
• 2.5-5.5 cm: middle peaked flux due to electrostatic and wave 

coupling.
• 6.5 cm: center peaked flux ( with a middle peaked [e] ): edge effect 

reduced at larger gap.

• Flux of CF3
+• Flux of Ar+

• Ar/CF4=90/10
• 50 mTorr, 400 sccm

• HF: 150 MHz/300 W
• LF: 10 MHz/300 W
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Center Edge

• 1.5 cm
• Center • Center• Edge • Edge

• Narrow gap has large 
center-to-edge non-
uniformity due to 
change in sheath width.

• Narrower sheath near 
edge produces broaded 
IEAD.

• Large gap enables more 
diffusive and uniform 
sheath properties – and 
so more uniform IEADs.

• Ar/CF4=90/10, 50 mTorr, 400 sccm
• HF: 150 MHz/300W
• LF: 10 MHz/300 W

• 5.5 cm
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TOTAL ION IEADs INCIDENT ON WAFER vs GAP



CONCLUDING REMARKS

• For DF-CCPs sustained in Ar/CF4=90/10 mixture with HF = 150 MHz:
• With increasing pressure, maximum of ionization source (Se) 

shifts towards the HF electrode as energy relaxation distance 
decreases.

• Se mirrors EM field, which is center peaked from constructive 
interference and [e] profile transitions from edge high to center 
high.

• Increasing fraction of CF4 to 20% results in more uniform ion 
fluxes and IEADs incident on wafer.

• Effects of gap size in Ar/CF4=90/10 mixture:
• Between 2.5 and 6.5 cm, [e] profile is not sensitive to gap size

since larger than energy relaxation distance.
• Small gaps have more edge-to-center non-uniformity in IEADs 

due to strong edge effects.
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