SOURCES OF NON-EQUILIBRIUM IN PLASMA MATERIALS PROCESSING*

Mark J. Kushner University of Illinois Dept. of Electrical and Computer Engineering 1406 W. Green St. Urbana, IL 61801 USA mjk@uiuc.edu <u>http://uigelz.ece.uiuc.edu</u>

June 2003

* Work supported by National Science Foundation, Semiconductor Research Corp., Electric Power Research Institute, Applied Materials.

ISPC03_01

- Sources of non-equilibrium in plasma processing
- Examples of non-equilibrium
 - Electron transport and electromagnetics
 - Wall chemistry and plasma kinetics
 - Electrostatics in microdischarges
- Concluding Remarks

SO WHAT DO WE MEAN BY (NON-)EQUILIBRIUM?

- "Non-equilibrium" in plasma processing describes many phenomena, from electron transport to chemical kinetics.
- Mathematically.....If *F* is a source function for quantity *N(t)* having damping constant *τ*, then...

NONEQUILIBRIUM IN ELECTRON TRANSPORT

• Electron transport is governed by Boltzmann's equation, which describes non-equilibrium evolution of EED in space and time.

$$\frac{df(\varepsilon, r, t)}{dt} = -\frac{q\vec{E}(r, t)}{m_e} \cdot \nabla_v f(\varepsilon, r, t) - \vec{v} \cdot \nabla f(\varepsilon, r, t) + \left(\frac{\partial f}{\partial t}\right)_c$$

• Should collisions and advection dominate, spatially dependent steady state time solutions are obtained.

$$\left\| \left(\frac{\partial f}{\partial t} \right)_c \right\| \approx \left| \frac{q\vec{E}}{m_e} \cdot \nabla_v f \right| \approx \left| \vec{v} \cdot \nabla f \right| >> \left| \frac{df}{dt} \right|, \quad f = F(E(t), N(t))$$

• Solutions may be adiabatic to slow changes in electric field or densities of collision partners.

NONEQUILIBRIUM IN ELECTRON TRANSPORT

 When collisions dissipate energy (and momentum) in distances (or times) small compared to advection, the Local Field approximation is obtained.

$$\left\| \left(\frac{\partial f}{\partial t} \right)_c \right\| \approx \left| \frac{q\vec{E}}{m_e} \cdot \nabla_v f \right| >> \left| \vec{v} \cdot \nabla f \right|, \quad f(r) = F(E(r), N(r))$$

• Non-equilibrium is only manifested by changes in E and N.

NONEQUILIBRIUM IN NEUTRAL (ION) TRANSPORT

• Nonequilibrium in neutral flow often results from "slip" of directed momenta at low pressure .

$$\frac{\partial N_i}{\partial t} = -\nabla \cdot \phi_i + S_i, \quad \phi_i = \rho_i v_i / m_i$$

$$\frac{\partial (\rho_i v_i)}{\partial t} = -\nabla P_i - \nabla \cdot (\rho_i v_i v_i) - \nabla \cdot \tau - \sum_j f_{ij} \alpha_{ij} (v_i - v_j) + S_i$$

$$v_j$$

• If $\alpha_{ii} >> |v/\Delta x|$, the velocities equilibrate and a single fluid results.

$$\frac{\partial N}{\partial t} = -\nabla \cdot \phi, \quad \phi = \rho v / m, \quad \rho = \sum_{i} \rho_{i}$$
$$\frac{\partial (\rho v)}{\partial t} = -\nabla P - \nabla \cdot (\rho v v) - \nabla \cdot \tau + S_{i}$$
$$\frac{\partial N_{i}}{\partial t} = -\nabla \cdot \phi_{i}, \quad \phi_{i} = N_{i} v - D_{i} N_{o} \nabla \left(\frac{N_{i}}{N_{o}}\right)$$

NONEQUILIBRIUM IN CHEMICAL KINETICS

• Nonequilibrium in chemical kinetics (i.e., the source function) results from reaction rates being slow compared to convection.

$$\frac{\partial N_i}{\partial t} = -\nabla \cdot \phi_i + S_i$$
$$S_i = -N_i \sum_j N_j k_{ij} + \sum_{j,l} N_j N_l k_{jl} + (\nabla \cdot \phi_i) \gamma_i - \sum_l (\nabla \cdot \phi_l) \beta_{il}$$

• If $S_i >> N_i(v/\Delta x)$, densities become functions of only local thermodynamic parameters (EOS).

$$\frac{\partial N_o}{\partial t} = -\nabla \cdot N_o v, \quad N_i = f(N_o, T)$$

• Slowly varying boundary conditions such as wall passivation produce long term "nonequilibrium."

NONEQUILIBRIUM IN ELECTROMAGNETICS

• Electromagnetics are governed by Maxwell's equations. In the frequency domain,

$$-\frac{1}{\mu} \left(\nabla \left(\nabla \cdot \overline{E} \right) + \nabla^2 \overline{E} \right) = \frac{\partial^2 \left(\varepsilon \overline{E} \right)}{\partial t^2} + \overline{J}_{plasma} + \overline{J}_{antenna}$$

• Although a quasi-steady harmonic state solution, non-equilibrium occurs through the consequences of E on plasma transport.

$$\nabla \cdot \overline{E} = \rho / \varepsilon_o = 0$$
 "Equilibrium"
$$= \sum_i q_i \int (dN_i / dt) dt \neq 0$$
 "Nonequilibrium"

• These terms most often produce electrostatic waves.

University of Illinois Optical and Discharge Physics

NONEQUILIBRIUM IN ELECTROMAGNETICS

- Nonequilibrium often occurs through the feedback between the E-fields, electron transport and plasma generated current.
- Currents which are linearly proportional to fields...equilibrium

$$\overline{J}_{plasma}(r,t) = \sigma(r,t)\overline{E}(r,t) = \sigma_o(r,t)\overline{E}(r)\exp(i\omega t + \phi(r))$$

• Currents which have complex relationships to electron (or ion transport) initiated at remote sites...nonequilibrium

$$\overline{J}_{plasma}(r,t) = \iint G(r,t,r',t') \sigma(r',t') \overline{E}(r',t') dr' dt' = \sum_{i} q_i(N_i v_i)$$

• In ICP systems, this results in non-monotonic decay of Efields.

University of Illinois Optical and Discharge Physics

• The self shielding of plasmas through the generation of self restoring electric fields provides "electrostatic" equilibrium.

$$\phi_i = -q_i \mu_i \nabla \Phi - D \nabla N_i \quad \leftrightarrow \quad -\nabla \cdot \varepsilon \nabla \Phi = \sum_i q_i N_i$$

• Self restoring electric fields ultimately produce quasineutrality and ambipolar transport.

$$\sum_{i} q_{i} N_{i} \approx 0 \quad \rightarrow \quad \phi_{i} = D_{ambipolar} \nabla N_{i}$$

 In systems where dimensions are commensurate with Debye lengths and shielding is incomplete, electrostatic nonequilibrium occurs.

EXAMPLES OF NON-EQUILIBRIUM

- Electromagnetic non-equilibrium: Anomalous skin depth
- Chemical non-equilibrium: Evolving wall passivation
- Electrostatic nonequilibrium: Microdischarges

rf BIASED INDUCTIVELY COUPLED PLASMAS

- Inductively Coupled Plasmas (ICPs) with rf biasing are used here.
- < 10s mTorr, 10s MHz, 100s W kW, electron densities of 10¹¹-10¹² cm⁻³.

• The wave equation is solved in the frequency domain with tensor conductivities.

$$-\nabla \left(\frac{1}{\mu}\nabla \cdot \overline{E}\right) + \nabla \cdot \left(\frac{1}{\mu}\nabla \overline{E}\right) = \frac{\partial^2 \left(\varepsilon \overline{E}\right)}{\partial t^2} + \frac{\partial \left(\overline{\overline{\sigma}} \cdot \overline{E} + \overline{J}\right)}{\partial t}$$

• The electrostatic term is addressed using a perturbation to the electron density.

$$\nabla \cdot \overline{E} = \frac{\rho}{\varepsilon} = \frac{q\Delta n_e}{\varepsilon}, \quad \Delta n_e = -\nabla \cdot \left(\frac{\overline{\overline{\sigma}} \cdot \overline{E}}{q}\right) / \left(\frac{1}{\tau} + i\omega\right)$$

 Conduction currents are kinetically derived to account for noncollisional effects.

$$\mathbf{J}_{e}(\vec{r},t) = J_{o}(\vec{r})\exp(i(\omega t + \phi_{v}(\vec{r}))) = -qn_{e}(\vec{r})\vec{v}_{e}(\vec{r})\exp(i(\omega t + \phi_{v}(\vec{r})))$$

• Continuum:

$$\partial \left(\frac{3}{2}n_e kT_e\right) / \partial t = S(T_e) - L(T_e) - \nabla \cdot \left(\frac{5}{2}\Phi kT_e - \overline{\overline{\kappa}}(T_e) \cdot \nabla T_e\right) + S_{EB}$$

- <u>Kinetic</u>: A Monte Carlo Simulation is used to derive $f(\varepsilon, \vec{r}, t)$ including electron-electron collisions using electromagnetic and electrostatic fields.

PLASMA CHEMISTRY, TRANSPORT AND ELECTROSTATICS

• Continuity, momentum and energy equations for each species, and site balance models for surface chemistry.

$$\frac{\partial N_{i}}{\partial t} = -\nabla \cdot (N_{i} \vec{v}_{i}) + S_{i}$$

$$\frac{\partial (N_{i} \vec{v}_{i})}{\partial t} = \frac{1}{m_{i}} \nabla (kN_{i}T_{i}) - \nabla \cdot (N_{i} \vec{v}_{i} \vec{v}_{i}) + \frac{q_{i}N_{i}}{m_{i}} (\vec{E} + \vec{v}_{i} \times \vec{B}) - \nabla \cdot \overline{\mu}_{i} - \sum_{j} \frac{m_{j}}{m_{i} + m_{j}} N_{i}N_{j} (\vec{v}_{i} - \vec{v}_{j}) v_{ij}$$

$$\frac{\partial (N_{i}\varepsilon_{i})}{\partial t} + \nabla \cdot Q_{i} + P_{i}\nabla \cdot U_{i} + \nabla \cdot (N_{i}U_{i}\varepsilon_{i}) = \frac{N_{i}q_{i}^{2}v_{i}}{m_{i}(v_{i}^{2} + \omega^{2})} E^{2}$$

$$+ \frac{N_{i}q_{i}^{2}}{m_{i}v_{i}} E_{s}^{2} + \sum_{j} 3 \frac{m_{ij}}{m_{i} + m_{j}} N_{i}N_{j}R_{ij}k_{B}(T_{j} - T_{i}) \pm \sum_{j} 3N_{i}N_{j}R_{ij}k_{B}T_{j}$$

• Implicit solution of Poisson's equation.

$$\nabla \cdot \varepsilon \nabla \Phi (t + \Delta t) = - \left(\rho_s + \sum_i q_i N_i - \Delta t \cdot \sum_i (q_i \nabla \cdot \vec{\phi}_i) \right)$$

University of Illinois Optical and Discharge Physics

ISPC03_14

FORCES ON ELECTRONS IN ICPs

• Inductive E-field provides azimuthal acceleration; depth 1-3 cm.

$$\delta = \left(m_e / \left(e^2 \mu_o n_e \right) \right)^{\frac{1}{2}}$$

Electrostatic (capacitive) penetrates (100s μm to mm)

$$\lambda_{S} \approx 10 \lambda_{D}, \lambda_{D} = \left(kT_{e} / \left(8\pi n_{e}e^{2} \right) \right)^{1/2}$$

• Non-linear Lorentz Force $\vec{F} = v_{\theta} \times \vec{B}_{rf}$

• Ref: V. Godyak, "Electron Kinetics of Glow Discharges"

• Collisional heating:

$$\lambda_{mfp} < \delta_{skin}, \quad \vec{J}_{e}(\vec{r},t) = \sigma(\vec{r},t)\vec{E}(\vec{r},t)$$

• Anomalous skin effect:

$$\begin{aligned} \lambda_{mfp} &> \delta_{skin} \\ \vec{J}_{e}(\vec{r},t) = \iint \sigma(\vec{r},\vec{r}',t,t') \vec{E}(\vec{r}',t') d\vec{r}' dt' \\ \vec{F} &= \vec{v} \times \vec{B} \end{aligned}$$

- Electrons receive (positive) and deliver (negative) power from/to the E-field.
- E-field is non-monotonic.

ELECTRON DENSITY: Ar, 10 mTorr, 200 W, 7 MHz

- Model is about 20% below experiments. This likely has to do with details of the sheath model.
- V. Godyak et al, J. Appl. Phys. 85, 703 (1999); private communication

TIME DEPENDENCE OF THE EED

- Time variation of the EED is mostly at higher energies where electrons are more collisional.
- Dynamics are dominantly in the electromagnetic skin depth where both collisional and non-linear Lorentz Forces) peak.
- The second harmonic dominates these dynamics.

• Ar, 10 mTorr, 100 W, 7 MHz, r = 4 cm

ANIMATION SLIDE

TIME DEPENDENCE OF THE EED: 2nd HARMONIC

- Electrons in skin depth quickly increase in energy and are "launched" into the bulk plasma.
- Undergoing collisions while traversing the reactor, they degrade in energy.
- Those surviving "climb" the opposite sheath, exchanging kinetic for potential energy.
- Several "pulses" are in transit simultaneously.
- Electron transport nonequilibrium!
 - Ar, 10 mTorr, 100 W, 7 MHz, r = 4 cm

University of Illinois Optical and Discharge Physics

ANIMATION SLIDE

• Amplitude of 2nd Harmonic

2nd HARMONIC OF EED WITHOUT LORENTZ FORCE

- Excluding v x B terms, the non-linear Lorentz Force is removed.
- Electrons are alternately heated and cooled in the skin depth, out of phase with E_{θ} , with some collisional heating.
- High energy electrons do not propagate (other than by diffusion) outside the skin layer.

• Amplitude of 2nd Harmonic

• Ar, 10 mTorr, 100 W, 7 MHz, r = 4 cm

ANIMATION SLIDE

- By decreasing frequency, B_{rf} increases, the skin depth lengthens and NLF increases.
- Lower pressure extends the electron mean free path.
- Significant modulation extends to lower energies.

• Amplitude of 2nd Harmonic

ANIMATION SLIDE

• Ar, 1 mTorr, 100 W, 3 MHz, r = 4 cm

TIME DEPENDENCE OF EED: 1 mTorr, 3 MHz

- At reduced pressure and frequency, the conditions for the nonlinear skin effect are fulfilled.
- The EED is essentially depleted of low energy electrons in the skin layer.

ANIMATION SLIDE

• Ar, 1 mTorr, 100 W, 3 MHz, r = 4 cm

COLLISIONLESS TRANSPORT ELECTRIC FIELDS

- E_θ exhibits extrema and nodes resulting from this noncollisional transport.
- "Sheets" of electrons with different phases provide current sources interfering or reinforcing the electric field for the next sheet.
- Axial transport results from $\vec{v} \times \vec{B}_{rf}$ forces.
- Electromagnetic nonequilibrium!

ANIMATION SLIDE

POWER DEPOSITION: POSITIVE AND NEGATIVE

• The end result is regions of positive and negative power deposition.

SNLA_0102_19

POWER DEPOSITION vs FREQUENCY

• The shorter skin depth at high frequency produces more layers of negative power deposition of larger magnitude.

SNLA_0102_32

TIME DEPENDENCE OF Ar IONIZATION: PRESSURE

 Although B_{rf} may be nearly the same, at large P, v_θ and meanfree-paths are smaller, leading to lower harmonic amplitudes.

EXAMPLES OF NON-EQUILIBRIUM

- Electromagnetic non-equilibrium: Anomalous skin depth
- Chemical non-equilibrium: Evolving wall passivation
- Electrostatic nonequilibrium: Microdischarges

SURFACE CHEMISTRY OF Si ETCHING IN Cl₂ PLASMAS

 Etching of Si in Cl₂ plasmas proceeds by passivation of Si sites, followed by ion activated removal of SiCl_n etch product.

 Etch products deposit on reactor walls. Cl atom recombination and SiCl_n sticking slows on the passivated surfaces.

LONG TERM PASSIVATION OF WALLS

- Experimental measurements of optical emission, ion flux and etch rates during CI etching of Si have long term behavior.
- Transients are correlated with increasing film thickness on walls, reducing sticking coefficients for CI and SiCI.
- ICP, Cl₂, 10 mTorr, 800 W.
- Plasma-surface chemical nonequilibrium!
- S. J. Ullal, T. W. Kim, V. Vahedi and E. S. Aydil, JVSTA 21, 589 (2003)

CHEMICAL NONEQUILIBRIUM: Ar/Cl₂ WITH WALL PASSIVATION

- Computationally contrast Ar/Cl₂ ICPs etching Si with SiCl₂ product, with/without wall passivation.
- Implement a multistep passivation model beginning with SiCl₂ polymerization. Higher degree of polymerization reduces CI reassociation.
- Without wall passivation: $CI \rightarrow wall \rightarrow CI_2$, p = 0.3
- With final wall passivation: $CI \rightarrow wall \rightarrow CI_2$, p = 0.01
- Ar/Cl₂ = 80/20, 10 mTorr, 400 W, 200 sccm

[SiCl₂] WITH/WITHOUT WALL PASSIVATION

• Without passivation, SiCl₂ has a longer residence time and builds to higher densities. Note momentum transfer from jetting nozzle.

ISPC03_21

[SiCl₂] TRANSIENT WITH/WITHOUT WALL PASSIVATION

• SiCl₂ initially sticks to walls in both cases. As passivation progresses, the sticking coefficient decreases.

• Passivation reduces CI losses on the walls, increasing its density and making pumping the largest loss.

[CI] TRANSIENT WITH WALL PASSIVATION

• When walls are clean, CI reassociation is a large sink. As the walls passivate, surface losses decrease (except to wafer).

 Without passivation, Cl₂ has sources at walls, raising its density. In both cases, dissociation fraction is large.

ISPC03_22

• Without wall passivation, sources Cl₂ from the walls are larger, resulting in more dissociative attachment and lower [e].

EXAMPLES OF NON-EQUILIBRIUM

- Electromagnetic non-equilibrium: Anomalous skin depth
- Chemical non-equilibrium: Evolving wall passivation
- Electrostatic non-equilibrium: Microdischarges

MICRODISCHARGE PLASMA SOURCES

- Microdischarges are plasma devices which leverage pd scaling to operate dc atmospheric glows 10s $-100s \ \mu m$ in size.
- MEMS fabrication techniques enable innovative structures for displays and detectors.
- Although similar to PDP cells, MDs are dc devices which largely rely on nonequilibrium beam components of the EED.
- Electrostatic nonequilibrium results from their small size. Debye lengths and cathode falls are commensurate with size of devices.

$$L_{cathode Fall} = \left(\frac{2V_c \varepsilon_0}{(qn_I)}\right)^{1/2} \approx 10 - 20 \,\mu m$$
$$\lambda_D \approx 750 \left(\frac{T_{eV}}{n_e (cm^{-3})}\right)^{1/2} cm \approx 10 \,\mu m,$$

PYRAMIDAL MICRODISCHARGE DEVICES

- Si MDs with 10s μ m pyramidal cavities display nonequilibrium behavior: Townsend to negative glow transitions.
- Small size also implies electrostatic nonequilibrium.

 S.-J. Park, et al., J. Sel. Topics Quant. Electron 8, 387 (2002); Appl. Phys. Lett. 78, 419 (2001).

2-D MODELING OF MICRODISCHARGE SOURCES

• Charged particle continuity (fluxes by Sharfetter-Gummel form)

$$\frac{\partial N_i}{\partial t} = -\vec{\nabla} \cdot \left(qN_i \mu_i \left(-\vec{\nabla} \Phi \right) - D_i \nabla N_i \right) + S_i$$

• Poisson's Equation for Electric Potential

$$-\nabla \cdot \varepsilon \nabla \Phi = \rho_V + \rho_S$$

• Bulk continuum electron energy transport and MCS beam.

$$\frac{\partial(n_e\varepsilon)}{\partial t} = \vec{j} \cdot \vec{E} - n_e \sum_i N_i \kappa_i - \nabla \cdot \left(\frac{5}{2}\varepsilon\varphi - \lambda\nabla T_e\right), \quad \vec{j} = q\vec{\phi}_e$$

• Neutral continuity and energy transport.

$$\frac{\partial N_i}{\partial t} = -\nabla \cdot \left(\vec{v} - DN_o \nabla \left(\frac{N_i}{N_o} \right) \right) + S_i, \quad \frac{\partial (\rho cT)}{\partial t} = -\nabla \cdot \kappa \nabla T + P_g$$

University of Illinois Optical and Discharge Physics

ISPC03_29

• Transport of energetic secondary electrons is addressed with a Monte Carlo Simulation.

- Superimpose Cartesian MCS mesh on unstructured fluid mesh. Construct Greens functions for interpolation between meshes.
- Electrons and their progeny are followed until slowing into bulk plasma or leaving MCS volume.
- Electron energy distribution is computed on MCS mesh.
- EED produces source functions for electron impact processes which are interpolated to fluid mesh.

MODEL GEOMETRY: SI PYRAMID MICRODISCHARGE

Investigations of a cylindrically symmetric Si pyramid MD.
 Typical meshes have 5,000-10⁴ nodes, dynamic range of 50-100.

BASE CASE: Ne, 600 Torr, 50 μ m DIAMETER

- Optimum conditions produces large enough charge density to warp electric potential into cathode well.
- In spite of large Te, ionization is dominated by beam electrons.

• Ne, 600 Torr, 50 μm diameter, 200 V, 1 M Ω

BASE CASE: CHARGED PARTICLE DENSITIES

- There are few regions of quasi-neutrality or which are positive column-like.
- [e] > 10^{13} cm⁻³ for 10s μ A.
- Excited state densities >10¹⁵ cm⁻³ are commensurate with macroscopic pulsed discharge devices.

ELECTRON DENSITY vs PRESSURE

• The discharge becomes more confined at higher pressures due to shorter stopping length of beam electrons.

BEAM vs BULK: NONEQUILIBRIUM IONIZATION SOURCES

- The threshold for Ne \rightarrow Ne⁺⁺ is 41 eV. Monitoring S[Ne⁺⁺]/S[Ne⁺] signals MD transitions from Townsend-like to negative glow-like.
- Negative glow-like excitation occurs with P < 550 Torr.

- Pd scaling should not be a steadfast expectation.
- Sheath properties scale with absolute plasma density and not pd.
- Scaling requires careful ballasting to keep [e] and sheath

• When keeping ballast constant, j decreases in larger devices, resulting in lower electron density, less shielding, more "electrostatic" equilibrium. Electron cloud "pops" out of cavity.

• Ne, 200 V, 1 MΩ

CONCLUDING REMARKS and ACKNOWLEDGEMENTS

- Nonequilibrium in plasma processing is everywhere you look...
 - Electromagnetics
 - Plasma dynamics
 - Surface chemistry
 - Electrostatics
- The development of computational and experimental techniques to resolve non-equilibrium will continue to be important in improving our fundamental understanding of these processes.
- Collaborators
 - Dr. Alex Vasenkov
 - Mr. Arvind Sankaran

University of Illinois Optical and Discharge Physics