FLUOROCARBON ETCHING OF POROUS SILICON DIOXIDE: PLASMA CHEMISTRY AND SURFACE KINETICS

Arvind Sankaran, Alex Vasenkov and Mark J. Kushner University of Illinois Department of Electrical and Computer Engineering Urbana, IL 61801 mjk@uiuc.edu http://uigelz.ece.uiuc.edu

October 2002

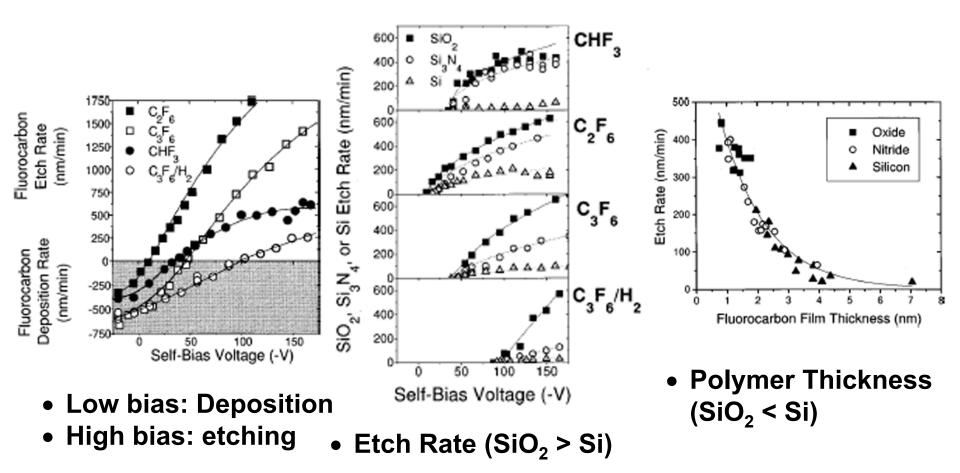
AGENDA AND ACKNOWLEDGEMENTS

- Fluorocarbon plasma etching of dielectrics
- Description of modeling hierarchy
- Scaling laws for solid and porous dielectric etching
- Concluding Remarks
- Acknowledgements:
 - Prof. Gottlieb Oehrlein
 - Semiconductor Research Corporation, National Science Foundation, Sematech, Applied Materials

FLUOROCARBON PLASMA ETCHING: DIELECTRICS

- Fluorocarbon plasma etching of dielectrics, and selectivity with respect to conductors, is one of the first plasma processing technologies.
- Earliest works of Coburn and Winters addressed CF₄ etching of Si and SiO₂.
- In spite of longevity, fluorocarbon plasma etching is still the foremost process for obtaining selectivity between dielectrics (e.g., SiO₂, Si₃N₄) and underlying conductors (e.g., Si, p-Si).
- Optimization of these processes is critical as dielectrics thin and selectivity requirements become extreme.
- The use of low-k dielectrics for interconnect wiring with new materials has brought new challenges.

FLUORCARBON PLASMA ETCHING: SELECTIVITY


- Selectivity in fluorocarbon etching relies on polymer deposition.
- Electron impact dissociation of feedstock fluorocarbons produce polymerizing radicals and ions, resulting in polymer deposition.

 $e + Ar/C_4F_8 \longrightarrow CF_n$. M⁺

$$CF_n, M^+$$
 COF_n, SiF_n
 CF_x CF_x CF_n, M^+ SiF_n
 CF_x CF_x CF_x $Polymer$
 SiO_2 Si

- Compound dielectrics contain oxidants which consume the polymer, producing thinner polymer layers.
- Thicker polymer on non-dielectrics restrict delivery of ion energy (lower etching rates).

FLUORCARBON PLASMA ETCHING: SELECTIVITY

• G. Oerhlein, et al., JVSTA 17, 26 (1999)

University of Illinois Optical and Discharge Physics

ADVMET_1002_05

PLASMA ETCHING OF LOW-K DIELECTRICS

• Low dielectric constant (low-k) dielectrics are generally classified as inorganic, organic or hybrid.

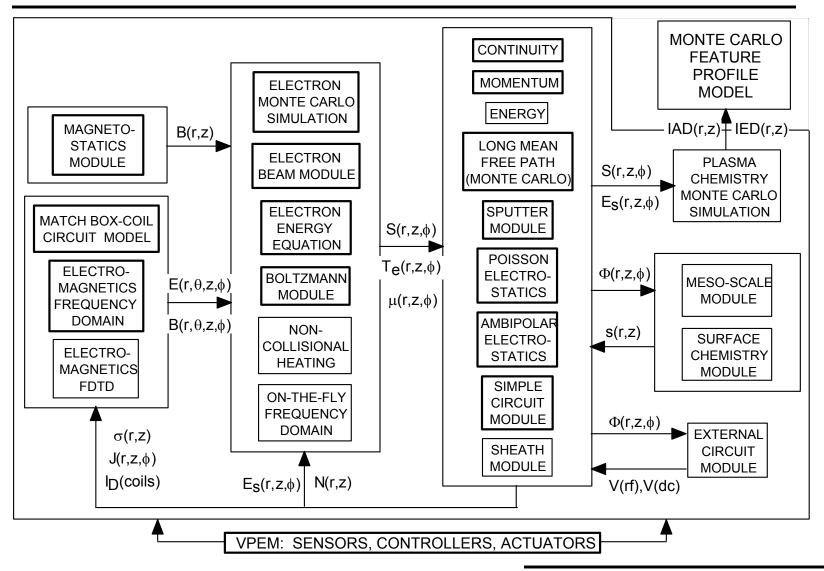
Inorganic	Organic	Hybrid
SiO ₂	Parylene-N	Benzocyclobutene (BCB)
$SiO_{2-\delta}F_{\gamma}$	Parylene-F	Methyl silsesquioxane (MSQ)
Hydrogen silsesquioxane (HSQ)	Polyarylene ether (PAE-2)	Porous MSQ
Porous HSQ	Polytetrafluoroethylene (PTFE)	Organosilicate glasses (OSG)
Xerogels*	SiLK/porous SiLK	
	Fluorinated polyimide (FPI)	AJK STRIF
	FLARE/Porous FLARE	
Fluorocarbon etching chemistry	Oxygen etching chemistry	Fluorocarbon and/ or oxygen chemistry
Resist mask	SiO ₂ or Si ₃ N ₄ mask	SiO ₂ or Si ₃ N ₄ mask
*contain residual organic groups and could therefore also be listed under hybrid materials		

- Inorganics are etched using fluorocarbon chemistries; organics are etched using oxygen chemistries.
 - Solid State Technology, May 2000

- Porous SiO₂ (xerogels) have low-k properties due to their lower mass density resulting from (vacuum) pores.
 - Typical porosities: 30-70%
 - Typical pore sizes: 2-20 nm
- Porous SiO₂ (P-SiO₂) is, from a process development viewpoint, an ideal low-k dielectric.
 - Extensive knowledge base for fluorocarbon etching of conventional non-porous (NP-SiO₂).
 - No new materials (though most P-SiO₂ contains some residual organics)
 - Few new integration requirements

ETCHING OF P-SiO₂: GENERAL TRENDS

• Etching of Porous SiO₂ typically proceeds at a higher rate than NP-SiO₂ for the same conditions due to the lower mass density.


- When correcting for mass, etch rates are either larger or smaller than NP- SiO₂, depending on porosity, pore size, polymerization.
 - Standaert et al, JVSTA 18, 2742 (2000).

MODELING OF FLUOROCARBON PLASMA ETCHING

- Our research group has developed an integrated reactor and feature scale modeling hierarchy to model plasma processing systems.
 - HPEM (Hybrid Plasma Equipment Model)
 - Reactor scale
 - 2- and 3-dimensional
 - ICP, CCP, MERIE, ECR
 - Surface chemistry
 - First principles

- <u>MCFPM (Monte Carlo</u> <u>Feature Profile Model)</u>
 - Feature scale
 - 2- and 3-dimensional
 - Fluxes from HPEM
 - First principles

HYBRID PLASMA EQUIPMENT MODEL

• The wave equation is solved in the frequency domain using sparse matrix techniques (2D,3D):

$$-\nabla \left(\frac{1}{\mu} \nabla \cdot \overline{E}\right) + \nabla \cdot \left(\frac{1}{\mu} \nabla \overline{E}\right) = \frac{\partial^2 \left(\varepsilon \overline{E}\right)}{\partial t^2} + \frac{\partial \left(\overline{\sigma} \cdot \overline{E} + \overline{J}\right)}{\partial t}$$
$$\vec{E}(\vec{r},t) = \vec{E}'(\vec{r}) \exp(-i(\omega t + \varphi(\vec{r})))$$

• Conductivities are tensor quantities (2D,3D):

$$\overline{\overline{\sigma}} = \sigma_o \frac{mv_m}{q\alpha} \frac{1}{\left(\alpha^2 + \left|\vec{B}\right|^2\right)} \begin{pmatrix} \alpha^2 + B_r^2 & \alpha B_z + B_r B_\theta & -\alpha B_\theta + B_r B_z \\ -\alpha B_z + B_r B_\theta & \alpha^2 + B_\theta^2 & \alpha B_r + B_\theta B_z \\ -\alpha B_\theta + B_r B_z & -\alpha B_r + B_\theta B_z & \alpha^2 + B_z^2 \end{pmatrix}$$
$$\overline{j} = \overline{\overline{\sigma}} \cdot \vec{E} \qquad \alpha = \frac{\left(i\omega + v_m\right)}{q/m}, \quad \sigma_o = \frac{q^2 n_e}{mv_m}$$

• Continuum (2D,3D):

$$\partial \left(\frac{3}{2}n_e kT_e\right) / \partial t = S(T_e) - L(T_e) - \nabla \cdot \left(\frac{5}{2}\Phi kT_e - \overline{\overline{\kappa}}(T_e) \cdot \nabla T_e\right) + S_{EB}$$

- where $S(T_e) =$ Power deposition from electric fields $L(T_e) =$ Electron power loss due to collisions $\Phi =$ Electron flux $\kappa(T_e) =$ Electron thermal conductivity tensor $S_{EB} =$ Power source source from beam electrons
- Power deposition has contributions from wave and electrostatic heating.
- <u>Kinetic (2D,3D)</u>: A Monte Carlo Simulation is used to derive $f(\varepsilon, \vec{r}, t)$ including electron-electron collisions using electromagnetic fields from the EMM and electrostatic fields from the FKM.

PLASMA CHEMISTRY, TRANSPORT AND ELECTROSTATICS

• Continuity, momentum and energy equations are solved for each species (with jump conditions at boundaries) (2D,3D).

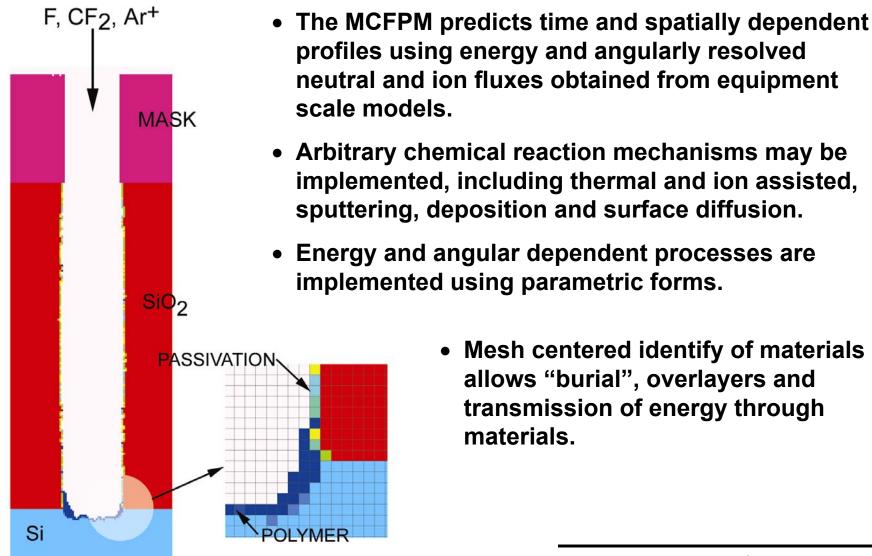
$$\frac{\partial N_i}{\partial t} = -\nabla \cdot (N_i \vec{v}_i) + S_i$$

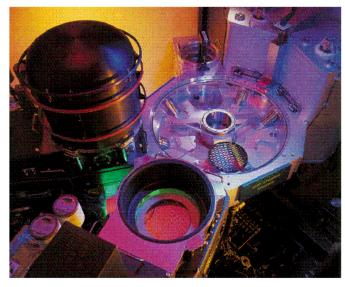
$$\frac{\partial (N_i \vec{v}_i)}{\partial t} = \frac{1}{m_i} \nabla (kN_i T_i) - \nabla \cdot (N_i \vec{v}_i \vec{v}_i) + \frac{q_i N_i}{m_i} (\vec{E} + \vec{v}_i \times \vec{B}) - \nabla \cdot \overline{\mu}_i$$

$$-\sum_j \frac{m_j}{m_i + m_j} N_i N_j (\vec{v}_i - \vec{v}_j) v_{ij}$$

$$\frac{\partial (N_i \varepsilon_i)}{\partial t} + \nabla \cdot Q_i + P_i \nabla \cdot U_i + \nabla \cdot (N_i U_i \varepsilon_i) = \frac{N_i q_i^2 v_i}{m_i (v_i^2 + \omega^2)} E^2$$

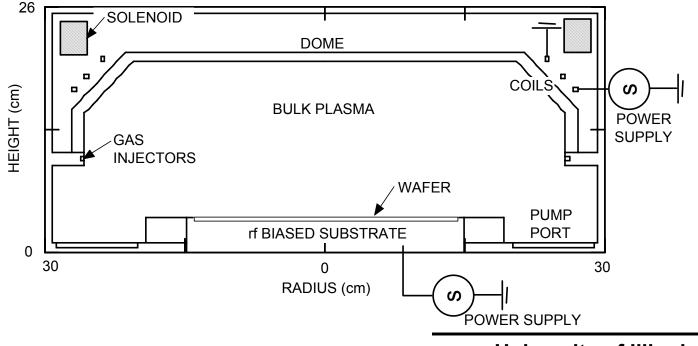
$$+ \frac{N_i q_i^2}{m_i v_i} E_s^2 + \sum_j 3 \frac{m_{ij}}{m_i + m_j} N_i N_j R_{ij} k_B (T_j - T_i) \pm \sum_j 3N_i N_j R_{ij} k_B T_j$$

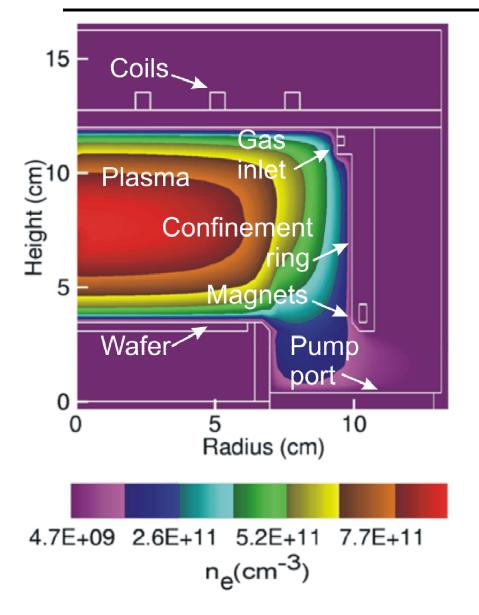

• Implicit solution of Poisson's equation (2D,3D):


$$\nabla \cdot \varepsilon \nabla \Phi (t + \Delta t) = - \left(\rho_s + \sum_i q_i N_i - \Delta t \cdot \sum_i (q_i \nabla \cdot \vec{\phi}_i) \right)$$

University of Illinois Optical and Discharge Physics

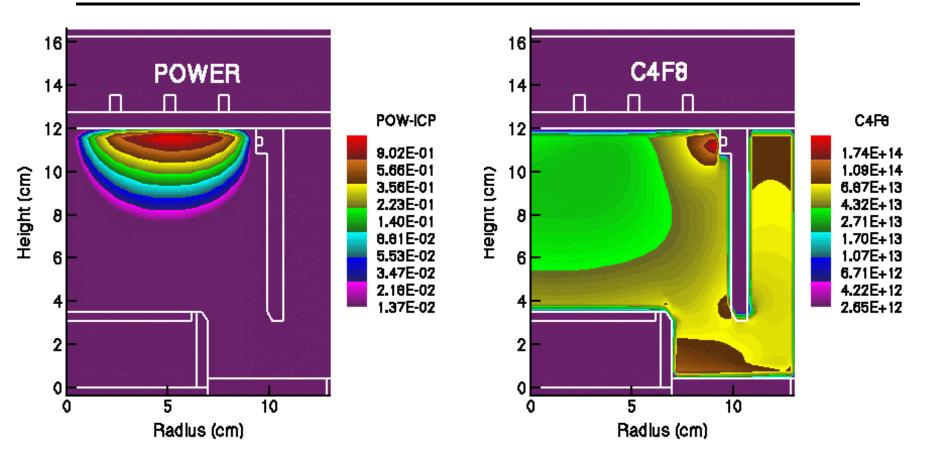
1 1 1


MONTE CARLO FEATURE PROFILE MODEL (MCFPM)



rf BIASED INDUCTIVELY COUPLED PLASMAS

- Inductively Coupled Plasmas (ICPs) with rf biasing are used here.
- < 10s mTorr, 10s MHz, 100s W kW, electron densities of 10¹¹-10¹² cm⁻³.



TYPICAL ICP CONDITIONS: [e] FOR C₄F₈, 10 mTORR

- An ICP reactor patterned after Oeherlein, et al. was used for validation.
- Reactor uses 3-turn coil (13.56 MHz) with rf biased substrate (3 MHz)
- Electron densities are 10¹¹-10¹² cm⁻³ for 1.4 kW.

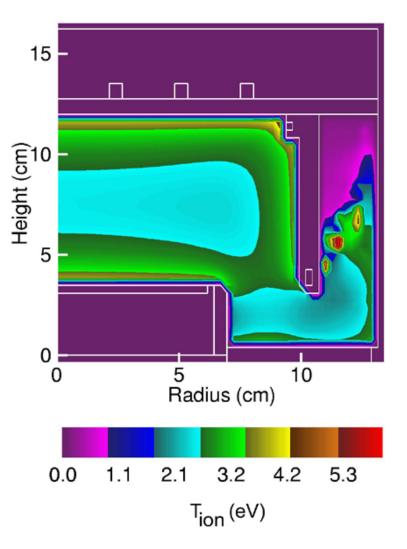
POWER, C₄F₈ DENSITY

- Large power deposition typically results in near total dissociation of feedstock gases.
 - C₄F₈, 10 mTorr, 1.4 kW, 13.56 MHz

MAJOR POSITIVE IONS: C_4F_8 , 10 mTORR

15

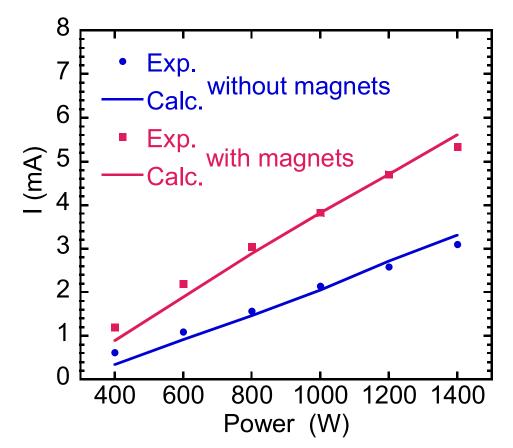
Height (cm) • CF_3^+ , CF_2^+ , and CF^+ are dominant ions due to 5 dissociation of C_4F_8 . 0 5 0 Radius (cm) 2.2E+10 4.8E+10 1.0E+11 2.3E+11 n_{ion}(cm⁻³) • C₄F₈, 10 mTorr, 1.4 kW, 13.56 MHz


> **University of Illinois Optical and Discharge Physics**

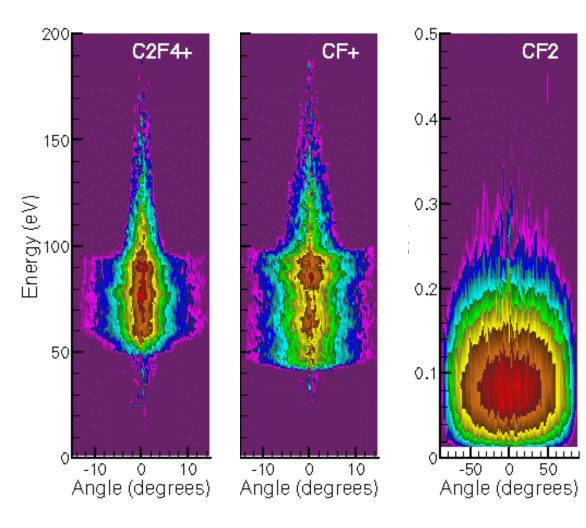
10

 CF_3^+

CF₃⁺ TEMPERATURE


 The ion temperature is peaked near the walls where ions gain energy during acceleration in the presheath.

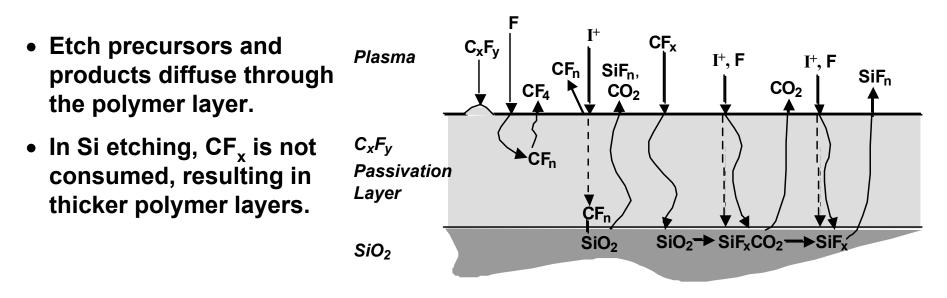
• C₄F₈, 10 mTorr, 1.4 kW, 13.56 MHz


I_P VERSUS ICP POWER for C₄F₈

- Extensive validation of the plasma models are performed with available data for densities, temperatures and fluxes.
- Ion saturation current derived from the model are compared to experiments: Ion densities are larger with moderate static magnetic fields.

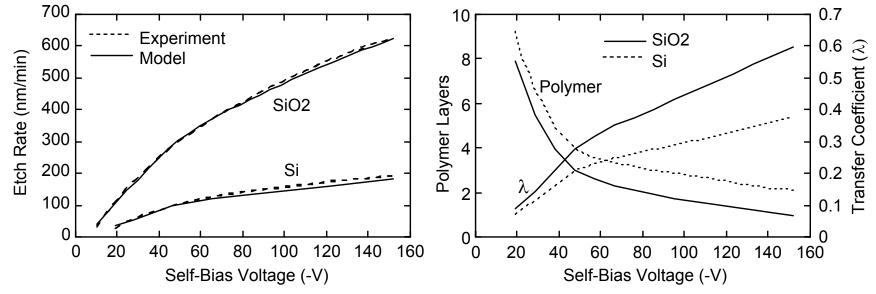
- C₄F₈, 10 mTorr, 13.56 MHz, 100 V probe bias
- Experiments: G. Oehrlein, Private Comm.

ION/NEUTRAL ENERGY/ANGULAR DISTRIBUTIONS



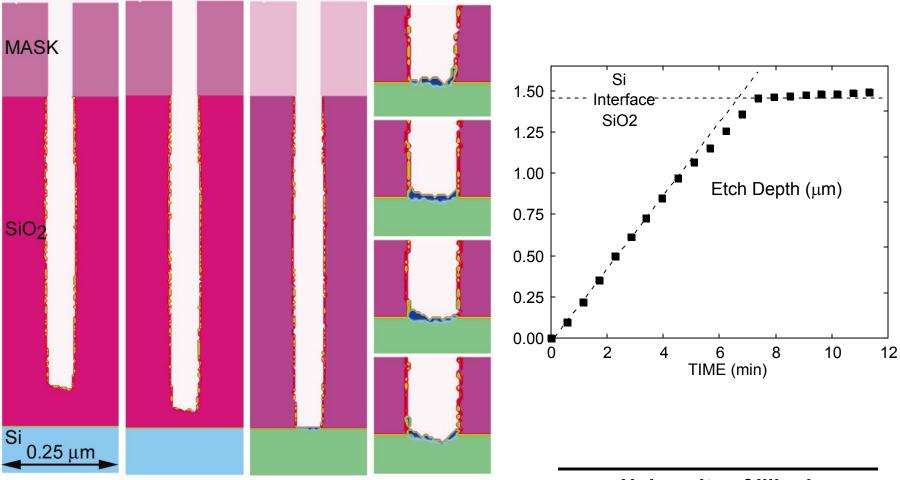
- The end products of reactor scale modeling are energy and ion angular distributions to the surface.
- In complex gas mixtures the IEADs can significantly vary from species to species.

• Ar/C₄F₈, 40 mTorr, 10b MHz, MERIE

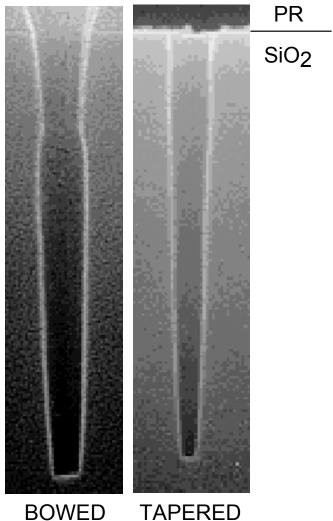

SURFACE KINETICS DURING Si/SiO₂ ETCHING

- Fluorocarbon etching of SiO₂ relies on a polymerization and chemically enhanced sputtering.
- C_xF_y passivation regulates delivery of precursors and activation energy.
- Chemisorption of CF_x produces a complex at the oxide-polymer interface.
- 2-step ion activated (through polymer layer) etching of the complex consumes the polymer. Activation scales inversely with polymer thickness.

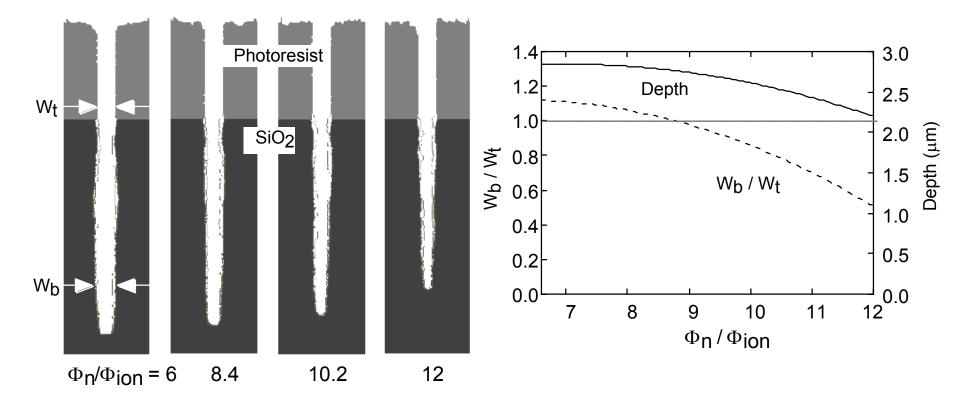
ETCH RATES AND POLYMER THICKNESS


- Etch rates for Si and SiO₂ increase with increasing bias due, in part, to a decrease in polymer thickness.
- The polymer is thinner with SiO₂ due to its consumption during etching, allowing for more efficient energy transfer through the layer and more rapid etching.

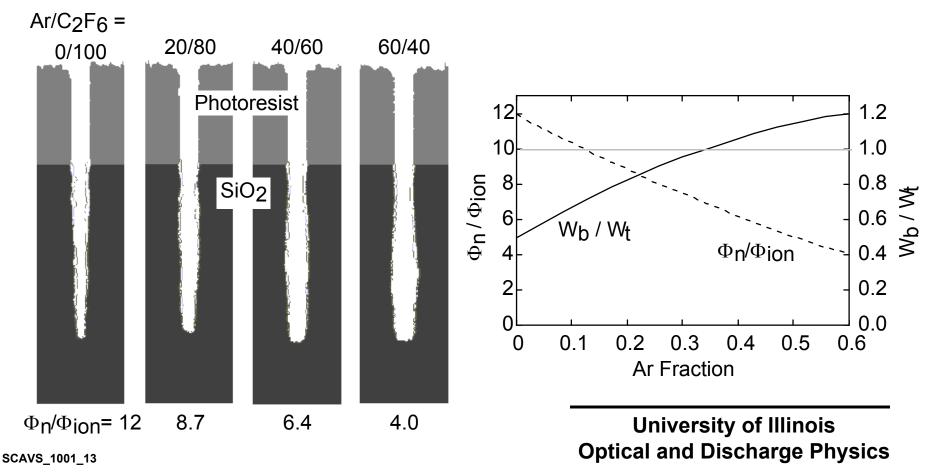
- C₂F₆, 6 mTorr, 1400 W ICP, 40 sccm
- Exp. Ref: T. Standaert, et al.
 J. Vac. Sci. Technol. A 16, 239 (1998).


POLYMERIZATION AIDS SELECTIVITY

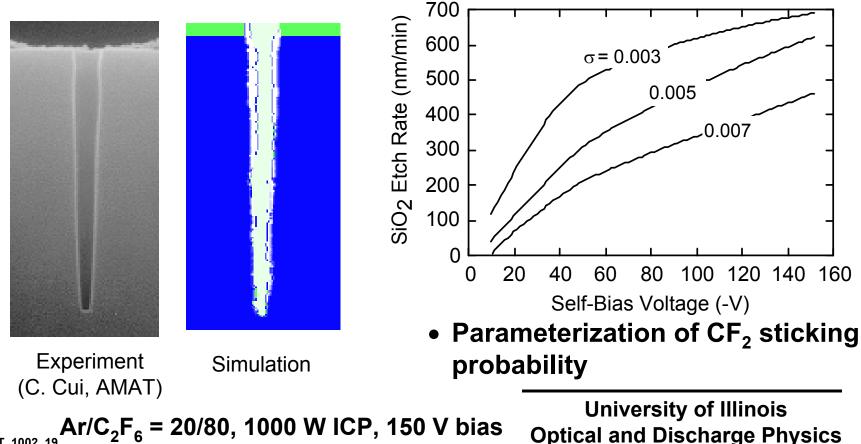
• Less consumption of polymer on Si relative to SiO₂ slows and, in some cases, terminates etching, providing high selectivity.


TAPERED AND BOWED PROFILES

- In high aspect ratio (HAR) etching of SiO_2 the sidewall of trenches are passivated by neutrals (CF_x, x \leq 2) due to the broad angular distributions of neutral fluxes.
- Either tapered or bowed profiles can result from a non-optimum combination of processing parameters including:
 - Degree of passivation
 - Ion energy distribution
 - Radical/ion flux composition.


PROFILE TOPOLOGY: NEUTRAL TO ION FLUX RATIO

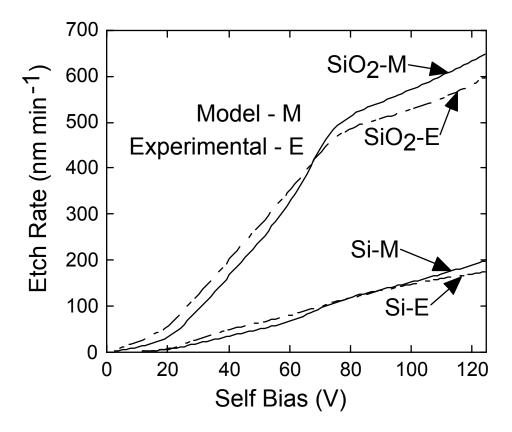
• The etch profile is sensitive to the ratio of polymer forming fluxes to energy activating fluxes. Small ratios result in bowing, large ratios tapering.

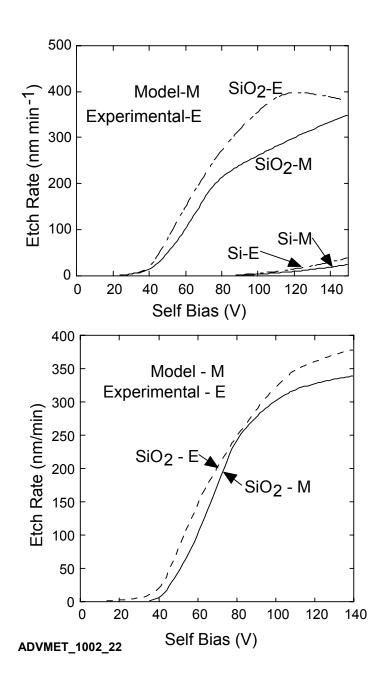


PROFILE TOPOLOGY: ENGINEERING SOLUTIONS

- Knowledge of the fundamental scaling parameter for controlling sidewall slop enables engineering solutions and real-time-control options.
- Example: Ar/C₂F₆ ratio controls polymerizing/ion flux ratio, and hence profile topology.

• Lack of fundamental parameters often requires calibration of models using design of experiment methodologies. In turn, the dominant, rate limiting processes are determined.

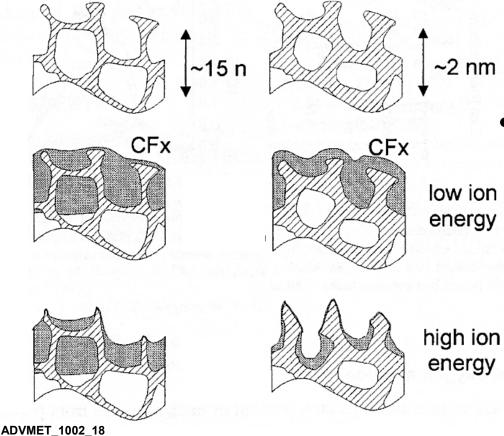

ADVMET_1002_19


- A reaction mechanism is simply a set of reactions with fundamental coefficients and probabilities which should not depend on the chemistry (e.g., CHF₃ vs C₂F₆ vs C₄F₈)
- The chemistry merely determines the magnitude of the fluxes but not the reaction pathways.
- An etch mechanism valid for C₂F₆ plasmas should, with no change, also be valid for C₄F₈ plasmas.
- Development of reaction mechanisms across different chemistries should *result in more reliable mechanisms*.

CALIBRATION OF REACTION MECHANISM: I

 The mechanism was validated by comparison to experiments by Oehrlein *et al* using C₂F₆ gas chemistry.¹

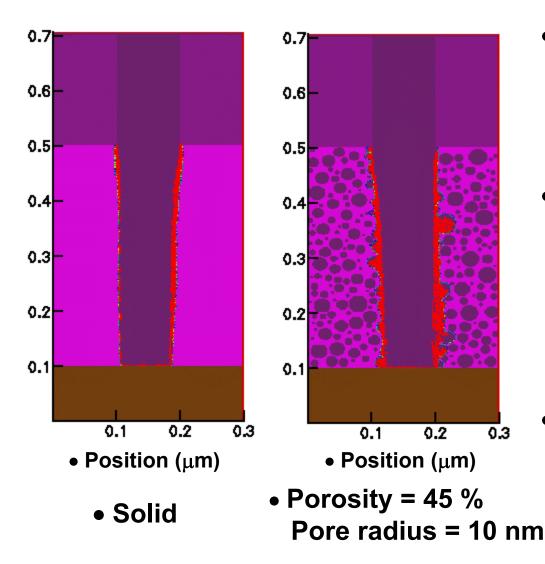
 Threshold for SiO₂ etching was well captured at selfbias ≈ 20 V. For Si the etch rates were lower due to thicker polymer.

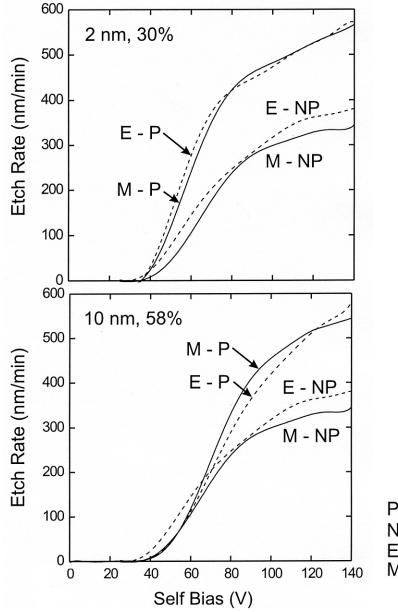


CALIBRATION OF REACTION MECHANISM: II

- Threshold for SiO₂ and Si etching were well captured at for CHF₃.
- Differences between model and experiments for SiO₂ are attributed to H radicals forming hydrocarbon polymer chains.
- This is accounted for in the model by modifying sputtering rates to account for mass differences.

WHAT CHANGES WITH POROUS SiO₂?


- The "opening" of pores during etching of P-SiO₂ results in the filling of the voids with polymer, creating thicker layers.
- lons which would have otherwise hit at grazing or normal angle now intersect with more optimum angle.

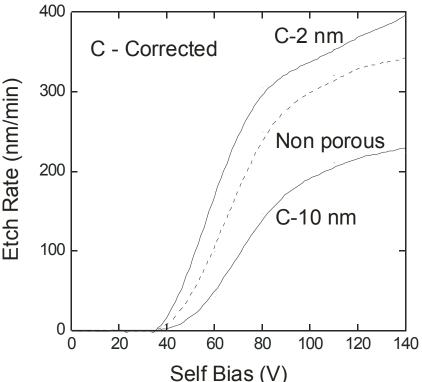

• An important parameter is L/a (polymer thickness / pore radius).

Adapted: Standaert, JVSTA 18, 2742 (2000)

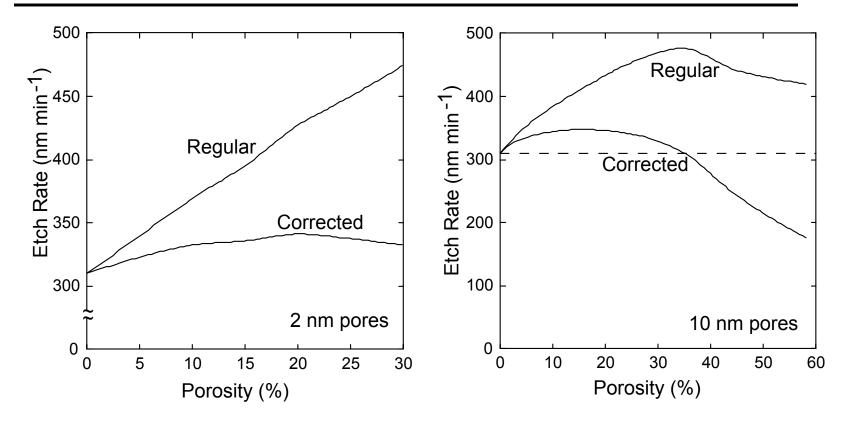
ETCH PROFILES IN SOLID AND POROUS SiO₂

- Porous SiO₂ is being investigated for lowpermittivity dielectrics for interconnect wiring.
- In polymerizing environments with heavy sidewall passivation, etch profiles differ little between solid and porous silica.
- The "open" sidewall pores quickly fill with polymer.

ETCHING OF POROUS SiO₂

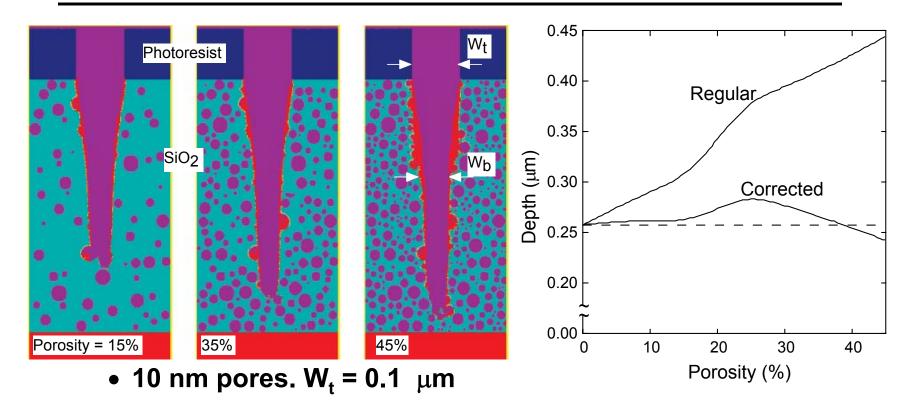

- Etch rates of P-SiO₂ are generally higher than for non-porous (NP).
- Examples:
 - 2 nm pore, 30% porosity
 - 10 nm pore, 58% porosity
- Higher etch rates are attributed to lower mass density of P-SiO₂.
- CHF₃ 10 mTorr, 1400 W

P - Porous NP - Non porous E - Experimental M - Model


Exp: Oehrlein et al. Vac. Sci.Technol. A **18**, 2742 (2000) ADVMET_1002_23

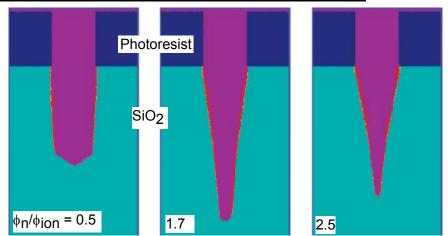
PORE-DEPENDENT ETCHING

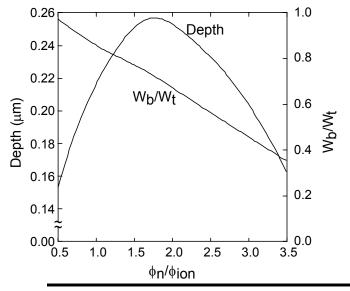
- To isolate the effect of pores on etch rate, corrected etch rate is defined as
 Etch Rate (ER) _{corrected} = ER _{regular} × (1-p),
 p = porosity
- If etching depended only on mass density, corrected etch rates would equal that of NP- SiO₂.
- 2 nm pores L/a ≥1 : C-ER > ER(SiO₂).
 Favorable yields due to non-normal incidence may increase rate.
- 10 nm pores L/a ≤ 1 : C-ER < ER(SiO₂).
 Filling of pores with polymer decrease rates.



EFFECT OF POROSITY ON BLANKET ETCH RATES

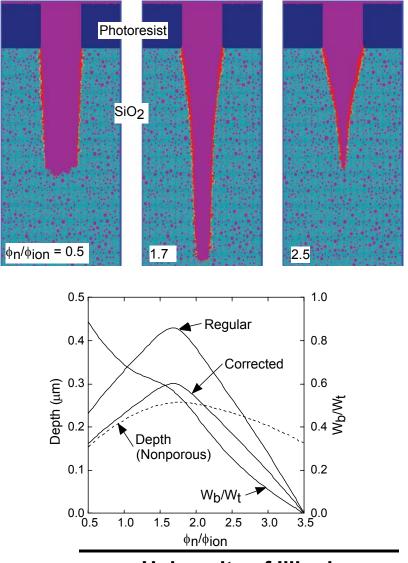
- 2 nm pores: Etch rate increases with porosity.
- 10 nm pores: Polymer filling of pores reduces etch rate at large porosities.

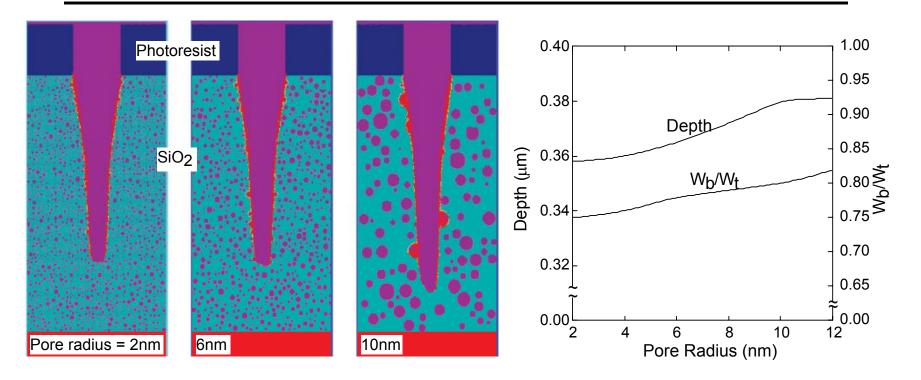

EFFECT OF POROSITY ON HAR TRENCHES



- At higher porosities, more opportunity for pore filling produces thicker average polymer layers and lower etch rates.
- Corrected etch rates fall below SiO₂ rates when critically thick polymer layers are formed.

EFFECT OF $\varphi_n/\;\varphi_{ion}$ ON HAR TRENCHES


- ϕ_n = total neutral flux
- ϕ_{ion} = total ion flux
- Small values of φ_n/ φ_{ion} may be polymer starved, producing lower etch rates.
- Medium and large ϕ_n / ϕ_{ion} produces thicker polymer, lower etch rates.
- Increasing ϕ_n / ϕ_{ion} produces increasing taper.



EFFECT OF $\varphi_n/\;\varphi_{ion}$ ON POROUS HAR TRENCHES

- 2 nm pores.
- P-SiO₂ is more sensitive to the consequences of varying φ_n/ φ_{ion} compared to NP-SiO₂.
- For large values of φ_n/ φ_{ion} previously enhanced etch rates (for small pores) become depressed until etching finally stops.
- Once tapering begins the L/a increases disproportionately quickly.

EFFECT OF PORE RADIUS ON HAR TRENCHES

• Porosity 25%. For sufficiently low porosity is little change in the etch rate or taper with pore radius.

- Etching of porous silicon-dioxide obeys many of the same scaling laws as solid materials.
- Net enhancements are seen with low porosity; net slowing of the etch rate occurs with large porosity (or pore size).
- The ratio of polymer thickness-to-pore size appears to determine much of this behavior. Thin polymer layers which fill pores appear to be thicker.
- Increased sensitivity to small changes in neutral-to-ion ratios could make maintaining CDs more problematic.