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FLUOROCARBON PLASMA ETCHING: DIELECTRICS

• Fluorocarbon plasma etching of dielectrics, and selectivity with
respect to conductors, is one of the first plasma processing 
technologies.

• Earliest works of Coburn and Winters addressed CF4 etching of Si 
and SiO2.

• In spite of longevity, fluorocarbon plasma etching is still the 
foremost process for obtaining selectivity between dielectrics 
(e.g., SiO2, Si3N4) and underlying conductors (e.g., Si, p-Si).

• Optimization of these processes is critical as dielectrics thin and 
selectivity requirements become extreme.

• The use of low-k dielectrics for interconnect wiring with new 
materials has brought new challenges. 
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FLUORCARBON PLASMA ETCHING: SELECTIVITY

• Selectivity in fluorocarbon etching relies on polymer deposition.

• Electron impact dissociation of feedstock fluorocarbons produce 
polymerizing radicals and ions, resulting in polymer deposition.
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• Compound dielectrics contain oxidants which consume the 
polymer, producing thinner polymer layers.

• Thicker polymer on non-dielectrics restrict delivery of ion energy 
(lower etching rates).
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FLUORCARBON PLASMA ETCHING: SELECTIVITY

• Low bias: Deposition
• High bias: etching
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• G. Oerhlein, et al., JVSTA 17, 26 (1999)

• Etch Rate (SiO2 > Si)

• Polymer Thickness 
(SiO2 < Si) 
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PLASMA ETCHING OF LOW-K DIELECTRICS

• Low dielectric constant (low-k) dielectrics are generally classified 
as inorganic, organic or hybrid.
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• Inorganics are etched using fluorocarbon chemistries; organics 
are etched using oxygen chemistries. 

• Solid State Technology, May 2000
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POROUS SILICON DIOXIDE

• Porous SiO2 (xerogels) have low-k properties due to their lower 
mass density resulting from (vacuum) pores.

• Typical porosities:   30-70%
• Typical pore sizes:   2-20 nm

• Porous SiO2 (P-SiO2) is, from a process development viewpoint, 
an ideal low-k dielectric.

• Extensive knowledge base for fluorocarbon etching of
conventional non-porous  (NP-SiO2).

• No new materials (though most  P-SiO2 contains some 
residual organics)

• Few new integration requirements
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ETCHING OF P-SiO2: GENERAL TRENDS
• Etching of Porous SiO2 typically proceeds at a higher rate than NP-SiO2

for the same conditions due to the lower mass density.

ADVMET_1002_08             

• When correcting for mass, etch rates are either larger or smaller than 
NP- SiO2, depending on porosity, pore size, polymerization.

• Standaert et al, JVSTA 18, 2742 (2000).
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MODELING OF FLUOROCARBON PLASMA ETCHING

• Our research group has developed an integrated reactor and 
feature scale modeling hierarchy to model plasma processing 
systems.
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• HPEM (Hybrid Plasma 
Equipment Model)

• Reactor scale
• 2- and 3-dimensional
• ICP, CCP, MERIE, ECR
• Surface chemistry
• First principles

• MCFPM (Monte Carlo 
Feature Profile Model)

• Feature scale
• 2- and 3-dimensional
• Fluxes from HPEM
• First principles
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HYBRID PLASMA EQUIPMENT MODEL
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ELECTROMAGNETICS MODEL

AVS01_03              

• The wave equation is solved in the frequency domain using sparse
matrix techniques (2D,3D):

• Conductivities are tensor quantities (2D,3D):
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ELECTRON ENERGY TRANSPORT

where S(Te) = Power deposition from electric fields
L(Te) = Electron power loss due to collisions
Φ = Electron flux
κ(Te) = Electron thermal conductivity tensor
SEB = Power source source from beam electrons

• Power deposition has contributions from wave and electrostatic heating.

• Kinetic (2D,3D):  A Monte Carlo Simulation is used to derive 
including electron-electron collisions using electromagnetic fields from 
the EMM and electrostatic fields from the FKM.
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PLASMA CHEMISTRY, TRANSPORT AND ELECTROSTATICS

• Continuity, momentum and energy equations are solved for each species 
(with jump conditions at boundaries) (2D,3D).
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• Implicit solution of Poisson’s equation (2D,3D):
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MONTE CARLO FEATURE PROFILE MODEL (MCFPM)

• The MCFPM predicts time and spatially dependent 
profiles using energy and angularly resolved 
neutral and ion fluxes obtained from equipment 
scale models.

• Arbitrary chemical reaction mechanisms may be 
implemented, including thermal and ion assisted, 
sputtering, deposition and surface diffusion.

• Energy and angular dependent processes are 
implemented using parametric forms.
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• Mesh centered identify of materials 
allows “burial”, overlayers and 
transmission of energy through 
materials.
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rf BIASED INDUCTIVELY
COUPLED PLASMAS

• Inductively Coupled Plasmas (ICPs) 
with rf biasing are used here.

• < 10s mTorr, 10s MHz, 100s W – kW, 
electron densities of 1011-1012 cm-3.
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TYPICAL ICP CONDITIONS: [e] FOR C4F8, 10 mTORR

• An ICP reactor patterned 
after Oeherlein, et al. was 
used for validation.

• Reactor uses 3-turn coil 
(13.56 MHz) with rf biased 
substrate (3 MHz)

• Electron densities are 
1011-1012 cm-3 for 1.4 kW.

ADVMET_1002_11

• C4F8, 10 mTorr, 1.4 kW, 13.56 MHz
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POWER, C4F8 DENSITY

• Large power deposition typically results in near total 
dissociation of feedstock gases.
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• C4F8, 10 mTorr, 1.4 kW, 13.56 MHz
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MAJOR POSITIVE IONS: C4F8, 10 mTORR

ADVMET_1002_13

• C4F8, 10 mTorr, 1.4 kW, 13.56 MHz

• CF3
+, CF2

+, and CF+ are 
dominant ions due to 
dissociation of C4F8. 

CF3
+
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CF3
+ TEMPERATURE

• The ion temperature is 
peaked near the walls where 
ions gain energy during 
acceleration in the presheath.
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• C4F8, 10 mTorr, 1.4 kW, 13.56 MHz
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IP VERSUS ICP POWER for C4F8

• Extensive validation of the 
plasma models are 
performed with available 
data for densities, 
temperatures and fluxes.

• Ion saturation current 
derived from the model are 
compared to experiments: 
Ion densities are larger 
with moderate static 
magnetic fields. 
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• Experiments: G. Oehrlein, Private Comm.

• C4F8, 10 mTorr, 13.56 MHz, 100 V probe bias 
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ION/NEUTRAL ENERGY/ANGULAR DISTRIBUTIONS

• The end products of 
reactor scale modeling 
are energy and ion 
angular distributions to 
the surface.

• In complex gas mixtures 
the IEADs can 
significantly vary from 
species to species.
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• Ar/C4F8, 40 mTorr, 10b MHz, MERIE 
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SURFACE KINETICS DURING Si/SiO2 ETCHING

• Fluorocarbon etching of SiO2 relies on a polymerization and chemically 
enhanced sputtering.

• CxFy passivation regulates delivery of precursors and activation energy.

• Chemisorption of CFx produces a complex at the oxide-polymer interface. 

• 2-step ion activated (through polymer layer) etching of the complex 
consumes the polymer. Activation scales inversely with polymer thickness.
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• Etch precursors and 
products diffuse through 
the polymer layer.

• In Si etching, CFx is not 
consumed, resulting in 
thicker polymer layers.
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ETCH RATES AND POLYMER THICKNESS

• Etch rates for Si and SiO2 increase with increasing bias due, in 
part, to a decrease in polymer thickness.

• The polymer is thinner with SiO2 due to its consumption during 
etching, allowing for more efficient energy transfer through the
layer and more rapid etching. 
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POLYMERIZATION AIDS SELECTIVITY
• Less consumption of polymer on Si relative to SiO2 slows and, 

in some cases, terminates etching, providing high selectivity.
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TAPERED AND BOWED PROFILES

• In high aspect ratio (HAR) etching of SiO2
the sidewall of trenches are passivated by 
neutrals (CFx, x ≤ 2) due to the broad 
angular distributions of neutral fluxes.

• Either tapered or bowed profiles can result 
from a non-optimum combination of 
processing parameters including:
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PROFILE TOPOLOGY: NEUTRAL TO ION FLUX RATIO

• The etch profile is sensitive to the ratio of polymer forming fluxes 
to energy activating fluxes.  Small ratios result in bowing, large 
ratios tapering.
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PROFILE TOPOLOGY: ENGINEERING SOLUTIONS

• Knowledge of the fundamental scaling parameter for controlling sidewall 
slop enables engineering solutions and real-time-control options.

• Example: Ar/C2F6 ratio controls polymerizing/ion flux ratio, and hence 
profile topology.  
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ASIDE ON REACTION MECHANISMS

• Lack of fundamental parameters often requires calibration of 
models using design of experiment methodologies.  In turn, the 
dominant, rate limiting processes are determined.

ADVMET_1002_19              

SimulationExperiment
(C. Cui, AMAT)

Si
O

2 
Et

ch
 R

at
e 

(n
m

/m
in

)

Self-Bias Voltage (-V)

0

100
200

300
400

500
600
700

0 20 40 60 80 100 120 140 160

σ = 0.003

0.005

0.007

• Parameterization of CF2 sticking 
probability

Ar/C2F6 = 20/80, 1000 W ICP, 150 V bias



University of Illinois
Optical and Discharge Physics

ASIDE ON REACTION MECHANISMS

• A reaction mechanism is simply a set of reactions with 
fundamental coefficients and probabilities which should not
depend on the chemistry (e.g., CHF3 vs C2F6 vs C4F8)

• The chemistry merely determines the magnitude of the fluxes but 
not the reaction pathways. 

• An etch mechanism valid for C2F6 plasmas should, with no 
change, also be valid for C4F8 plasmas.

• Development of reaction  mechanisms across different 
chemistries should result in more reliable mechanisms. 

ADVMET_1002_20              



University of Illinois
Optical and Discharge Physics

CALIBRATION OF REACTION MECHANISM: I
• The mechanism was validated by comparison to experiments 

by Oehrlein et al using C2F6 gas chemistry.1
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CALIBRATION OF REACTION
MECHANISM: II

• Threshold for SiO2 and Si
etching were well captured at 
for CHF3.

• Differences between model and 
experiments for SiO2 are 
attributed to H radicals forming 
hydrocarbon polymer chains.

• This is accounted for in the 
model by modifying sputtering 
rates to account for mass 
differences. 
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WHAT CHANGES WITH POROUS SiO2?

• The “opening” of pores during etching of P-SiO2 results in the 
filling of the voids with polymer, creating thicker layers.

• Ions which would have otherwise hit at grazing or normal angle 
now intersect with more optimum angle.
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• An important parameter is 
L/a (polymer thickness / pore 
radius).

• Adapted: Standaert, JVSTA 18, 2742 (2000)
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ETCH PROFILES IN SOLID AND POROUS SiO2

• Solid

MJK_RESEARCH_0207

• Porosity = 45 %
Pore radius = 10 nm

• Porous SiO2 is being 
investigated for low-
permittivity dielectrics 
for interconnect wiring.

• In polymerizing 
environments with heavy 
sidewall passivation, 
etch profiles differ little 
between solid and 
porous silica.

• The “open” sidewall 
pores quickly fill with 
polymer.

• Position (µm)• Position (µm)
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ETCHING OF POROUS SiO2

• Etch rates of P-SiO2 are generally 
higher than for non-porous (NP).

• Examples:

• 2 nm pore, 30% porosity
• 10 nm pore, 58% porosity

• Higher etch rates are attributed to 
lower mass density of P-SiO2.

• CHF3 10 mTorr, 1400 W

ADVMET_1002_23

Exp:  Oehrlein et al. Vac. Sci.Technol. A 18, 2742 (2000)



University of Illinois
Optical and Discharge Physics

PORE-DEPENDENT ETCHING
• To isolate the effect of pores on etch 

rate, corrected etch rate is defined as

• If etching depended only on mass 
density, corrected etch rates would 
equal that of NP- SiO2.

• 2 nm pores L/a ≥1 : C-ER > ER(SiO2).
Favorable yields due to non-normal 
incidence may increase rate.

• 10 nm pores L/a ≤ 1 : C-ER < ER(SiO2).
Filling of pores with polymer decrease 
rates.
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EFFECT OF POROSITY ON BLANKET ETCH RATES

• 2 nm pores: Etch rate increases with porosity.

• 10 nm pores: Polymer filling of pores reduces etch rate at large
porosities.
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EFFECT OF POROSITY ON HAR TRENCHES

ADVMET_1002_26

• At higher porosities, more opportunity for pore filling produces
thicker average polymer layers and lower etch rates.

• Corrected etch rates fall below SiO2 rates when critically thick 
polymer layers are formed.
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EFFECT OF φn/ φion ON HAR TRENCHES

• φn = total neutral flux

• φion = total ion flux

• Small values of φn/ φion may be 
polymer starved, producing 
lower etch rates.

• Medium and large φn/ φion
produces thicker polymer, 
lower etch rates.

• Increasing φn/ φion produces 
increasing taper. 
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EFFECT OF φn/ φion ON POROUS HAR TRENCHES

• 2 nm pores.

• P- SiO2 is more sensitive to the 
consequences of varying φn/ 
φion compared to NP-SiO2.

• For large values of φn/ φion
previously enhanced etch rates 
(for small pores) become 
depressed until etching finally 
stops.

• Once tapering begins the L/a 
increases disproportionately 
quickly.
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EFFECT OF PORE RADIUS ON HAR TRENCHES

ADVMET_1002_31

• Porosity 25%. For sufficiently low porosity is little change in 
the etch rate or taper with pore radius.
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CONCLUDING REMARKS

ADVMET_1002_32

• Etching of porous silicon-dioxide obeys many of the same 
scaling laws as solid materials.

• Net enhancements are seen with low porosity; net slowing of 
the etch rate occurs with large porosity (or pore size).

• The ratio of polymer thickness-to-pore size appears to 
determine much of this behavior.  Thin polymer layers which 
fill pores appear to be thicker.

• Increased sensitivity to small changes in neutral-to-ion ratios 
could make maintaining CDs more problematic.


