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AGENDA_______________________________________________

__________________
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• Introduction to plasma processes of microelectronics.

• Needs and requirements for plasma equipment modeling.

• Description of the Hybrid Plasma Equipment Model.

• Example of Equipment Design:  Ionized Metal PVD

• Virtual Plasma Equipment Model:  Real Time Control Strategies

• Concluding Remarks



MOORE'S LAW IN MICROELECTRONICS FABRICATION_______________________________________________
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• In the early 1980s Gordon Moore (Intel) observed that the complexity and
performance of micrelectronics chips doubles every 18 months.

• The industry has obeyed “Moore’s Law” through > 12 generations of devices.



UNIVERSITY OF ILLINOIS
OPTICAL AND DISCHARGE PHYSICS

NATIONAL TECHNOLOGY ROADMAP FOR
SEMICONDUCTORS

UMINN9804

• The NTRS sets goals for the microelectronics fabrication industry for future
  generation of devices.
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• Ref: “National Technology Roadmap for Semiconductors”, SIA, 1997.

• Feature sizes will continue
  to shrink with more
  transistors per chip while....



INCREASED COMPLEXITY REQUIRES NEW SOLUTIONS:
INTERCONNECT WIRING_______________________________________________

__________________
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• The levels of interconnect wiring will increase to 8-9 over the next decade
producing unacceptable signal propogation delays.  Innovative solutions
such as copper wiring and low-k dielectrics are being implemented.

Ref: IBM Microelectronics
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PLASMA PROCESSING FOR MICROELECTRONICS

CECAM98M15

• In plasma processing of semiconductors, electron impact on feedstock gases
  produces neutral radicals and ions which drift or diffuse to the wafer where
  they remove or deposit materials.

• This process is often called “cold combustion” since the feedstock gases are
   cool compared to the electrons.

ELECTRODE

PLASMA
REACTOR

NON-REACTIVE
GAS FLOW

PRODUCT
REMOVAL

e + CF4 → CF3
+ + F + 2e

→ CF2 + 2F + e

Si WAFER

CF3
+

F
SiF2CF4 SiF4



UNIVERSITY OF ILLINOIS
OPTICAL AND DISCHARGE PHYSICSCECAM98M21

PLASMAS ARE ESSENTIAL FOR ECONOMICALLY
FABRICATING FINE FEATURES IN MICROELECTRONICS

• In plasma processing, ions are accelerated nearly vertically into the wafer,
  thereby activating etch processes which produce straight walled, anisotropic
  features
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MICROELECTRONICS FABRICATION FACILITIES_______________________________________________
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• Modern microelectronics fabrication facilities are designed as "compact",
modular and non-redundant as possible to minimize the area of expensive
clean room space.



COST OF FABRICATION FACILITIES_______________________________________________
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• The cost of a major (> 20,000 wafers/month)
fabrication facility exceeds $1 Billion with an
increasing fraction of the cost being the
processingequipment.



THE VIRTUAL FACTORY: A DESIGN PARADIGM_______________________________________________
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• The “virtual factory” is a computer representation of a fabrication facility,
modeled either heuristically or from basic principles.

•  •  Ref: SIA Semiconductor Industry Association Roadmap, 1994.
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HISTORICAL PERSPECTIVE OF DEVELOPMENT
OF PLASMA ETCHING MODELS

ICRP96M11
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SPATIAL SCALES IN PLASMA PROCESSING SPAN
MANY ORDERS OF MAGNITUDE

ICRP97M12

• EQUIPMENT SCALE (cm - 10s cm)
Gas Flow
Heat Transfer
Plasma Transport
Chemical Kinetics

PLASMA

WAFER

e + CF4 > CF3+ + F + 2e

• FEATURE SCALE” (10s nm - µm)
Electron, Ion, Radical Transport
Plasma Surface Interaction
Surface chemistry
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SCHEMATIC OF THE HYBRID PLASMA EQUIPMENT MODEL_______________________________________________
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ELECTROMAGNETICS-CIRCUIT MODULES_______________________________________________
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• In the Electromagnetics-Module, the wave equation is solved in the
frequency domain
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ELECTROMAGNETICS-CIRCUIT MODULES_______________________________________________
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•• Coil currents Jo are obtained from an equivalent circuit model for the
antenna.  Each discrete element of the transmission line has impedance:

Z i L i C R Zi i i c Ti= − + + +ω ω

Li = Physical inductance
Ci = Capacitive coupling
Rc = Ohmic resistance of coil
ZTi = Transformed impedance of the plasma

• The driving voltage from the generator is obtained by specifying a total
power deposition by the electric field.

• Match conditions are obtained by varying the matchbox circuit elements to
minimize the reflected power.

• The complex amplitudes of the components of the wave are obtained
using either successive-over-relaxation or conjugate-gradient-sparse
matrix techniques.



ELECTRON ENERGY TRANSPORT_______________________________________________
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• Electron transport coefficients and electron impact source functions are
obtained by solving the electron energy equation.
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where S(Te) = Power deposition (from EEM and FKS)
L(Te) = Electron power loss due to collisions
ΦΦ    = Electron flux (obtained from FKS)
κκ(Te) = Electron thermal conductivity
SEB = Electron source from beam electrons (MCS)

• Transport coefficients are obtained as a function of average energy (εε =
(2/3) Te) from solution of Boltzmann' Equation for the electron energy
distribution.

• The energy equation is implicity solved using Successive-over-Relaxation.

• Secondary electron emitted from surfaces are addressed using a Monte
Carlo simulation.



PLASMA CHEMISTRY KINETICS SIMULATION_______________________________________________
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• In the plasma chemistry module we solve separate continuity, momentum
and energy equations for ions and neturals, and the electron continuity
equation.
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PLASMA CHEMISTRY KINETICS SIMULATION_______________________________________________
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•• Slip boundary conditions are used for neutral transport for momentum and
energy to address temperature jump conditions.

•• Gas flow (input nozzle, pumping) is included by specifying influx/outflux
boundary conditions.  Pressure is specified and the pump-speed is
throttled to maintain constant pressure and mass flux.

•• Important aspects of this formulation are:

•• Including "reflux" of species from surfaces
•• Momentum trransfer between species leading to ion drag, jetting of

input gases and entrainment.

• All equations are discretized using flux-conservative finite-volume
techniques.

• Tensor transport coeffiecients are used with static magnetic fields.

• PDEs are integrated in time using Runge-Kutta techniqes.



PLASMA CHEMISTRY KINETICS SIMULATION_______________________________________________

__________________
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• Poisson's equation is solved using a semi-implicit formulation which
includes a prediction of densities for the time at which the fields will be
used. Surface charges are included here.
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• Boundary conditions are obtained from a circuit model of the reactor and
driving electronics which specify voltage harmonics (amplitude and phase)
on metal surfaces.



• The MCFP model predicts time and spatially
  dependent etch profiles using neutral and ion
  fluxes from the PCMCS.

• Any chemical mechanism may be implemented
  in the MCFP using a "plasma chemistry" input
  hierarchy.

           e.g.,  Cl+ + SiCl2(s)   >  SiCl2(g)

• All pertinent processes can be included: thermal
  etch, ion assisted etch, sputter, redeposition,
  passivation.

• Energy dependent etch processes may
  be implemented using parametric forms.

• The MCFP may utilize ALL flux statistics
  from the PCMCS

• Ion energy and angular distributions
• Neutral energy and angular distributions
• Position dependent fluxes

MONTE CARLO FEATURE PROFILE MODEL (MCFP)

Resist

p-Si

SiO2

Cl

Ar

Cl2

Cl+

UNIVERSITY OF ILLINOIS
OPTICAL AND DISCHARGE PHYSICS

CECAM98M16

SiClx

"Passivation"

Side-wall
Passivation

Ar+Cl2+



10 s 20 s 40 s 80 s

• The time evolution of the trench etch is well matched by the simulation.

• The microtrenching develops more slowly for the experimental results
  possibly due to differences in slope of the resist sidewalls.

UNIVERSITY OF ILLINOIS
OPTICAL AND DISCHARGE PHYSICSSRC98-hoekstra06

ETCH PROFILE EVOLUTION

• 9400SE LAM TCP Reactor
  10 mTorr Cl 2  (60 sccm) 600 W , 100 W bias
  LSI Logic Corporation
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PHYSICAL VAPOR DEPOSITION OF METALS

CACEM98M01

• Physical-vapor-deposition (PVD) is a sputtering process in which metal 
  (and other) layers are deposited for barrier coatings and interconnect wiring.

• Typical Conditions:
 
    • < few mTorr Ar buffer
    • 100s V bias
    • 100s W - a few kW
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PVD DEPOSITION PROFILES

CACEM98M02

• In PVD, the atoms arriving at the substrate are mostly neutral with broad
  angular distributions.

• The corners of the trench see
  a larger solid angle of the metal
  atom flux, and so have a higher
  deposition rate.

• The end result is a nonuniform
  deposition and void formation.

• Columnators are often used
  to filter out large angle flux;
  at the cost of deposition rate
  and particle formation.

METAL

SiO2

METAL
ATOMS
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IONIZED METAL PHYSICAL VAPOR DEPOSITION (IMPVD)

CACEM98M03

• In IMPVD, a second plasma source is used to ionize a large fraction of the
  the sputtered metal atoms prior to reaching the substrate. 

• Typical Conditions:
 
    • 10-30 mTorr Ar buffer
    • 100s V bias on target
    • 100s W - a few kW ICP
    • 10s V bias on substrate
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IMPVD DEPOSITION PROFILES

CACEM98M04

• In IMPVD, a large fraction of the atoms
  arriving at the substrate are ionized.

• Applying a bias to the substrate
  narrows the angular distribution of
  the metal ions.

• The anisotropic deposition
  flux enables deep vias
  and trenches to be uniformly
  filled.

SiO2

METAL
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METAL
IONS

METAL
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DESCRIPTION OF SPUTTERING MODEL
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• Energy of the emitted atoms (E) obeys the 
  cascade distribution, an approximation 
  to Thompson’s law for Ei ≈ 100’s eV:
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 Λ = 4m imT / m i + mT( )2

subscripts: b ~ binding, i ~ ion, T ~ target.

• The sampling of sputtered atom energy E 
  from the cascade distribution gives 

E =
EbΛE i RN

Eb + ΛE i 1− RN( )

  where RN is a random number in interval [0,1].

ion 
flux

fast 
neutral 
flux

θ

Ar
Al Al

Target

wafer



PVD/IMPVD OF Cu: REACTOR LAYOUT_______________________________________________
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•• PVD/IMPVD reactor with Cu Target

• 3.5- 20 mTorr Ar (constant pressure), 150
sccm

• Annular magnetic field (200 G below target
• Target:        -200 V dc (2.4 kW)
• Substate:    40 V, 10 MHz, 350 W
• Coils:    2 MHz, 1250 W with Faraday shield

• Physics included:

• Gas heating by sputtered target atoms
• Ion energy dependent sputter yield
• Neutral and ion momentum and energy
• Bulk electron energy equation
• Monte Carlo secondary electrons
• Cross field Lorentz forces
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MAGNETRON SPUTTER TOOL: Ar/Cu

CECAM98M05

• Ar, 3.5 mTorr
• -200 V Target, 200 G

• Secondary electron emission from the target, and electron heating in the
  sheath, produces a torroidal electron source.

• Peak ion densities are mid-1012 cm-3.

• e-Source • Ar+ • Cu+
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 FLUXES IN THE Ar/Cu PVD TOOL

CECAM98M06

• Ar, 3.5 mTorr
• -200 V Target, 200 G

• Ion Flux

• Ion sputtering of the target produces a neutral
  Cu flux into the plasma.

• The low gas pressure and long mean free math
  of Cu atoms results in the flux to the substrate
  being “direct” neutrals.
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IMPVD TOOL: FIELDS AND TEMPERATURES

CECAM98M07

• Ar, 20 mTorr
• -200 V Target, 200 G
• 1.25 kW ICP, 2 MHz

• The added inductively coupled electric field from the rf coils heats electrons
  in the bulk plasma producing a peak in temperature away from the target. 

• Electron Temperature• Electric field
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IMPVD TOOL: ELECTRON SOURCE AND DENSITY

CECAM98M08

• Ar, 20 mTorr
• -200 V Target, 200 G
• 1.25 kW ICP, 2 MHz

• The combination of the magnetron fields and heating from the rf coils
  produces a more extended electron source and electron density. The
  ion density is 75% argon.

• Electron Density• Electron Source • Ar+
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IMPVD TOOL: ION FLUX AND SPUTTER SOURCE

CECAM98M09

• Ar, 20 mTorr
• -200 V Target, 200 G
• 1.25 kW ICP, 2 MHz

• The magnetron focus the ion flux to the target, producing a sputter source
  of Cu atoms.

• Due to the high gas pressure, the Cu atoms are thermalized in the vicinity of
  the target.

• Cu
  Source

• Ion
  Flux
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IMPVD TOOL: Cu DENSITIES

CECAM98M10

• Ar, 20 mTorr
• -200 V Target, 200 G
• 1.25 kW ICP, 2 MHz

• Due to the longer residence time of Cu in the chamber and the higher electron
  temperature produced by the rf heating, the Cu inventory is largely converted to
  ions and metastables [Cu(2D)].

• Cu(2S) • Cu(2D) • Cu+ 
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IMPVD TOOL: Cu FLUXES TO SUBSTRATE

CECAM98M11

• Ar, 20 mTorr
• -200 V Target, 200 G
• 1.25 kW ICP, 2 MHz

• The flux of Cu to the substrate
   is 85-90% ionized.

• The neutral flux is largely metastable
  Cu(2D).



REAL TIME CONTROL_______________________________________________
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• The "street" value of a processed 300 mm silicon wafer containing state-
of-the-art microprocessors is about $300,000.

• There are 300-400 manufacturing steps over about 1 month.

• A single manufacturing step which goes "sour", particularly at the back-of-
the-line, and which kills a die or reduces performance of the
microprocessors has an extreme "opportunity" cost.

• Real-time-control (RTC) strategies are being developed to maintain
manufacturing processes within desired ranges of operating conditions,
and so minimize loss of wafers (and consumables).
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VIRTUAL PLASMA EQUIPMENT MODEL (VPEM)

MURI9920
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l  The Virtual Plasma Equipment Model (VPEM) is a “shell” which supplies sensors,
    controllers and actuators to the HPEM.

HPEM
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MODULE

INITIAL AND OPERATING CONDITIONS

SENSOR POINTS AND ACTUATORS
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SENSOR
OPERATING
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SENSORS AND ACTUATORS IN THE VPEM_______________________________________________
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•• The VPEM has been equipped with a variety of sensors and actuators.

•• Sensors:

• Spatially averaged densities • Mass spectroscopy

• Densities at points • Fluxes to surfaces

• Optical emission through ports • Bias power

• Electrical sensors (I-V)* • Langmuir probe*

• Optical Interferometer* • Pressure

•• Actuators:

• Pressure • Flow rate/mole fractions

• Inductive power • Bias power

• Coil currents • Electrode voltage

• Power supply frequency • Match box settings*

* Under development



RESPONSE SURFACE BASED CONTROL ALGORITHM_______________________________________________
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•• Response-surface based controllers are typically used in the VPEM.

•• The response surface is developed by performing a "S-DOE" (statistical
design of experiments) using the commercial software package "E-CHIP".

•• The response surface is constructed in the following manner:

•• Sensors, actuators and parameter are specified.

•• Using E-CHIP, a statistical model is specified, a set of "experimental"
points are selected; and simulations run for those parameters.

•• A response surface is constructed from the simulation results, and least
mean square (LMS) polynomial coefficients are computed. In the case of
a 2 sensor-2 actuator control scheme
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• We assume that small perturbations do not significantly alter the response
surface, and linearize the system.



RESPONSE SURFACE BASED CONTROL ALGORITHM_______________________________________________
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•• The changes in sensor outputs resulting from small changes in actuator
settings are
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•• Taking the inverse,
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•• To restore the system from a perturbed condition (y1',y2') to desired a
desired condition (y1,y2) the actuators are changed by
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   where g is a specified gain.



ICP PLASMA TOOL: GEOMETRY, SENSORS, ACTUATORS

MURI9925
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l  An Inductively Coupled Plasma (ICP) reactor will be used to demonstrate control
   strategies during transients and recipe changes.

l  Sensors:  Optical emission, mass spectroscopy, ion current, electron density
    Actuators:  Coils currents, power deposition, pressure

I(1)/I(2) I(3)/I(2)

MASS
SPECTROMETER

SPATIALLY RESOLVED
OPTICAL EMISSIONFILTER

COIL CURRENTS
AND TOTAL POWER

ION CURRENT
PROBE (OR I-V
DIAGNOSTIC)

LANGMUIR
PROBE [e]

COILS

WAFER

SHOWERHEAD
NOZZLE

PUMP
PORT

DIELECTRIC
WINDOW



TYPICAL ICP DENSITIES
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l Ar/Cl2 = 98/2, 10 mTorr,

   200 W, 250 sccm

l Electric Field (8.8 V/cm) l Power (0.5 W/cm3)

l Cl2 (6.9 x 1011 cm-3) l Ions (1.8 x 1011 cm-3) l Optical Emission



ICP Ar PLASMA TOOL WITH N2 INJECTION
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l  The Mass Flow Controller (MFC) in an ICP plasma tool (Ar, 10 mTorr) malfunctions
    and injects a pulse of N2 (25 sccm)

l  Due to the large inelastic electron impact cross sections of N2, the electron and

   ion densities decrease.

l  Ar, 10 mTorr, 250 sccm, 200 W

Ar+

e, Ar+
e

N2+

N2

TIME [s (with x 10 acceleration)]
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SENSORS-ACTUATORS FOR CONTROL OF GAS INJECTION

MURI99M01

• Since etch rate depends on the total rate of radical production and ion
  bombardment on the wafer, choose electron density and ion flux as sensors.
 
• Since radical production scales with electron density and ion flux with pressure,
  choose power and pressure as actuators.

• Response surfaces obtained from DOE. Note weaker dependence on pressure
  implying need for lower gain.

PRESSURE (mTorr)

ELECTRON DENSITY (1011cm-3)

PRESSURE (mTorr)

ION FLUX TO WAFER (1018 s-1)

• Ar, 10 mTorr, 250 sccm



Ar+

e, Ar+ e

N2+

N2

TIME [s (with x 10 acceleration)]

ICP Ar PLASMA TOOL: N2 INJECTION w/CONTROL
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l The electron (and ion) densities are only moderately well regulated against the
    perturbation by N2 injection.

l The response surface was formulated using pure Ar, whereas the characteristics
    of the perturbed system differ significantly.

l  As the N2 density increases as the “pulse” moves through the reactor, larger

   actuator adjustments “in the future” are required than the controller suggests.

l  Ar, 10 mTorr, 250 sccm, 200 W



ICP Ar PLASMA TOOL: N2 INJECTION w/CONTROL (cont.)
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l When the N2 density increases, the controller underpredicts changes in actuator

    settings since the “future” conditions are always “worse”.  When the N2 density

    decreases, the controller overpredicts changes since future conditions are “better”.
.
l To address these issues, the controller requires knowledge of the “physics” of the
    disturbance or must cycle at a high enough frequency to negate poor knowledge of
    the future. 

l  Ar, 10 mTorr, 250 sccm, 200 W
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CONTROLLING AGAINST UNKNOWN TRANSIENTS (cont.)
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l With no apriori knowledge of the “physics” of the transients, one strategy is to
    increase the frequency of the controller so that lack of knowledge of future (or
    present) conditions is less of an issue.
 
l By doubling the frequency of the controller, a higher degree of control is obtained.

l  Ar, 10 mTorr, 250 sccm, 200 W
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RECIPE CHANGES AND IMPACT ON CONTROL_______________________________________________
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• During a plasma etching process, it is not unusual for there to be 2-4
"recipe" changes.

• Recipe changes are different values of, for example, power, pressure, flow
rate or gas mixture to address beginning, middle and end of the etch.

BREAK THROUGH
(NON-SELECTIVE

ISOTROPIC)

MAIN ETCH
(RAPID, 

ANISOTROPIC)

OVER ETCH
(HIGH SELECTIVITY)

SiO2 SiO2 SiO2

p-Sip-Sip-Si

Native
Oxide

• Changes in recipes may produce unanticipated changes in plasma
parameters such as uniformity or rate which may need to be controlled.



RECIPE CHANGE: Ar/Cl2 p-Si ETCH TOOL
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l  An ICP reactor undergoes a recipe change during which the input flow rate
   changes from Ar/Cl2 = 90/10 to 99/1.  “Clearing” through the reactor produces

   an intermediate term transient which will be “controlled”.

l  Electron impact processes deplete Cl2, produce radicals, ions and excited states

    which radiate.

e +  Cl2 > Cl + Cl

e + Cl2 > Cl2+ + 2e

e + Cl2 > Cl- + Cl

e + Cl > Cl+ + 2e

e + Cl > Cl* + e

e + Cl* > Cl+ + 2e

e + Ar >  Ar+ + 2e

e + Ar > Ar* + e
    

l  10 mTorr, 250 sccm, 200 W

Ar

Cl

Cl2

Flow Rates: Ar/Cl2=90/10      Ar/Cl2=99/1

STARTUP
TRANSIENT

TIME [s (with x 10 acceleration)]



RECIPE CHANGE: Ar/Cl  p-Si ETCH TOOL (cont.)
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l  Although the power deposition remains constant through the recipe change,
    the decreasing Cl2 produces a decrease in electron loss rates and power

    transfer.

l  As a consequence, total electron and ion densities increase (which one may want
   to control...)

l  10 mTorr, 250 sccm, 200 W

[e]

Ar+

Flow Rates: Ar/Cl2=90/10      Ar/Cl2=99/1

STARTUP
TRANSIENT

Cl+
Cl2+

Cl-

TIME [s (with x 10 acceleration)]



RECIPE CHANGE: CONTROL OF UNIFORMITY
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l  Goal: Control uniformity of etching before and after recipe change. Prior studies
    have shown a close correlation between Cl* emission and local etch rate.

l  Sensors:   Optical emission   S(1)/S(2), S(3)/S(2)
    Actuators:  Coils currents       I(1)/I(2),    I(3)/I(2)

I(1)/I(2) I(3)/I(2)

SPATIALLY RESOLVED
OPTICAL EMISSIONFILTER

COIL CURRENTS
AND TOTAL POWER

1 32

1 32

l  During the recipe change, the chlorine
    density changes from 10% to 1%,
    with there being commensurate 
    changes in plasma properties.

l In the absence of additional information,
    one must choose a chlorine density
    at which the response surface is
    developed and coefficients for the
    controller are derived. 
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RESPONSE SURFACES vs Ar/Cl2 RATIO

MURI99M02

• Response surfaces for uniformity of Cl* critically depend on the Ar/Cl2 ratio.

Ar/Cl2 = 90/10

Cl*(in) / Cl*(middle) Cl*(out) / Cl*(middle)

COIL(in) / COIL(middle) COIL(in) / COIL(middle)

Ar/Cl2 = 99/1



MULTI-PLANE RESPONSE SURFACES

MURI9929

UNIVERSITY OF ILLINOIS
OPTICAL AND DISCHARGE PHYSICS

l  Although the additional sensor data from the mass spec cannot be used directly
   by the (2 x 2) controller, it can be used to select coefficients for the controller which
   better represent the current conditions.

l So interpolate between response surfaces developed for different Cl2 flow rates

   based on mass spectrometer data.

MASS
SPECTROMETER

feff(Cl2) = 0.5 f(Cl) + f(Cl2) 

Ar

Cl

Cl2

TIME [s (with x 10 acceleration)]

feff(Cl2)



Ar/Cl2 RECIPE CHANGE: SENSORS WITH 2 PLANE CONTROL
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l In the absence of control, Cl* emission is peaked towards the center. 

l With 2-plane control (Ar/Cl2 = 90/10, 99/1), uniformity of emission at large radii is

    significantly improved, leading to an overall improvement in uniformity.

l Control is lost half way through the transient when the control surfaces do not
    represent instantaneous reactor conditions.

l  Ar/Cl2, 10 mTorr, 250 sccm, 200 W
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Ar/Cl2 RECIPE CHANGE: SENSORS WITH 3 PLANE CONTROL
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l  By adding an additional plane of response surfaces (Ar/Cl2 = 90/10, 95/5, 99/1), the

    time of control is extended. 

l  Control is most difficult to maintain at low mole fractions of Cl2 where the spatial 

    distribution of the plasma is changing most rapidly.

l  Ar/Cl2, 10 mTorr, 250 sccm, 200 W
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GEOMETRY FOR SEGMENTED ANTENNA
CONTROL PROBLEM

MURI98M02

• Sensors are optical emission from excited states of Cl atoms.

• Actuators are current through coils segments.

•  For a 2 x 2 controller....

  Sensor 1: (S(1)-S(3)) / [(S(1)+S(3)) x 0.5] Actuator 1:  Icoil(1) / Icoil(3)
  Sensor 2: (S(2)-S(3)) / [(S(2)+S(3)) x 0.5] Actuator 2:  Icoil(2) / Icoil(3)
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CHOICE OF DIAGNOSTIC

MURI98M04

• Chlorine etching of p-Si in inductively coupled plasma reactors is typically
  in the “ion-starved regime”...That is, the etch rate uniformity weakly depends on
  Cl atom density (because it is so large) and strongly depends on the ion flux.

• The optical emission from Cl* is closely correlated with ion flux to the substrate,
  approximates this function well. 

Etch Rate ∝
jion

jion + aφCl

-20 200
POSITION (cm)

• Cl* EMISSION

-20 200
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• ION FLUX
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PERTURBATION CAUSED BY SIDE
PUMPING

MURI98M08

• At low pressures, side pumping can perturb Cl atom densities across the wafer
  by 5-10%. The segmented antenna controller will be used to restore uniformity
  in the etching fluxes.

SUBSTRATE

FOCUS RING
PUMP
PORT

• Cl2, 10 mTorr, 400 W, 150 sccm

• Cl atom density at wafer
   (85% - 100%)
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RESTORED Cl* UNIFORMITY WITH
SIDE PUMPING

MURI98M09

• The RTC algorithm again restores the Cl* uniformity to within the “noise” level.
  Prior knowledge of the type of nonuniformity would be necessary to select
  sensors, coils which are better geometrically matched.

MIN MAX

• Perturbed :   Sensor 1,2 = -1.89,-1.47                   • Corrected :   Sensor 1,2 = -0.033,-0.014                   

-20 200
POSITION (cm)

• Cl2, 10 mTorr, 400 W, 150 sccm
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• Fundamental, first principles computer modeling of complex plasma
processing reactors has matured to the point that equipment is now first
designed "virtually".

• This modeling capability is now being applied to investigation and design
of real time control processes.

• Improvements in algorithms and data structures are required to provide a
similar capability to process design (i.e., device performance vs equipment
design)

• Extreme dynamic range in space. (1000 A to 10 cm)
• Extreme dynamic range in time (ns to 10 s)
• Database management
• Expert systems
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