AVS 2003 Nov 2 - 7, 2003 Baltimore, Maryland

3-Dimensional Modeling of Pulsed Inductively Coupled Plasmas: A Method to Improve Uniformity*

Pramod Subramonium** and Mark J. Kushner*** **Department of Chemical Engineering ***Department of Electrical and Computer Engineering University of Illinois Urbana, IL 61801

> email: subramon@uiuc.edu mjk@uiuc.edu http://uigelz.ece.uiuc.edu

*Work supported by SRC, NSF and Applied Materials

- Motivation
- Description of the model
- Consequences of asymmetric pumping
- 3-Dimensional modeling of pulsed Ar and Cl₂ plasmas
 - Effect of Duty cycle
 - Effect of PRF
- Conclusions

300MM WAFER PROCESSING: CHALLENGES

- Side-to-side asymmetries in plasma properties become more critical as wafer size increases.
- Side pumping and side gas injection are common in industrial reactors and can lead to asymmetries in species densities, fluxes and temperatures.
- Flow asymmetries become pronounced when feedback through plasma conductivity make the inductive fields and power deposition non-uniform.
- In this work, the impact of 3-d plasma transport and the effect of transients on uniformity were investigated.

University of Illinois Optical and Discharge Physics

3-D MODELING OF CW PLASMAS

 A 3-d finite element fluid model has been employed by Panagopoulos et. al.¹ for investigating azimuthal reactor asymmetries.

¹Panagopoulos et. al., J. Appl. Phys., 91(5), 2687 (2002) ²Kushner, J. Appl. Phys., 82(11), 5312 (1997) Pramod_avs_03

MOTIVATION: PULSED PLASMAS

- Pulsed plasmas
 - Plasma etching with better uniformity and anisotropy
 - Improved etch selectivity by modifying the ratio of chemical species
 - Reduce charge buildup on wafers and suppress notching
- Current models for investigating pulsed operation are typically global, 1-dimensional or 2-dimensional.
- Difficult to resolve long-term transients in multidimensional plasma equipment models.
- Moderately parallel algorithms for 3-dimensional hybrid models were developed to investigate long term transients.

University of Illinois Optical and Discharge Physics

PULSED PLASMAS

 Pulsed plasma is a rf discharge in which the carrier frequency is pulse-square wave modulated.

*S. K. Kanakasabapathy et al, Appl. Phys.Lett., Vol. 79, 1769 (2001)

University of Illinois Optical and Discharge Physics

Pramod_avs_05

DESCRIPTION OF PARALLEL HYBRID MODEL

- The HPEM, a modular simulator, was parallelized by employing a shared memory programming paradigm on a Symmetric Multi-Processor (SMP) machine.
- The Electromagnetics, Electron Energy Transport and Fluidkinetics Modules are simultaneously executed on three processors.
- The variables updated in different modules are immediately made available through shared memory for use by other modules.
- Dynamic load balancing is implemented to equalize the load on different processors.

REACTOR GEOMETRY AND SIMULATION CONDITIONS

- 2-turn symmetric coil, showerhead and an asymmetric pump port
- Base case conditions:
- Power: 500 W, 10 MHz
- Flow rate: 150 sccm
- Pressure: 10 mTorr
- PRF: 10 kHz
- Duty cycle: 50%
- Ar, Cl_2

Height-A: ICP power, Conductivity, Sources

Height-B: Densities, Temperatures, Fluxes

SYMMETRIC CASE: PLASMA PROPERTIES

- Plasma properties are azimuthally symmetric.
- n_e and plasma conductivity peaks in the center of the reactor.
- Electron impact sources peak off-axis at location of maximum power deposition.

CONTINUOUS WAVE (CW) OPERATION OF ICPS

- Flow induced non-uniformities in reaction sources make ion density non-uniform.
- Non-uniform plasma conductivity makes power deposition nonuniform.
- Non-uniform power deposition reinforces the asymmetries in reaction sources.
- This feedback loop during CW operation strengthens flow induced asymmetries.

EFFECT OF ASYMMETRIC PUMPING: Below Dielectric

- σ_p is azimuthally asymmetric below the dielectric due to non-uniform n_e .
- Non-uniform power deposition makes reaction sources asymmetric.

• Ar, 500 W, 10 mTorr, 150 sccm

EFFECT OF ASYMMETRIC PUMPING: Above Wafer

- [Ar⁺] peaks near the pump port due to the absence of a wall at the side of the pumping.
- T-Ar and T-Ar⁺ peak slightly off center to the side of pumping.
- T-Ar⁺ is higher near the walls owing to sheath heating.

PULSED OPERATION OF ICPS

- Pulsed plasma is a rf discharge in which the ICP power is pulsesquare wave modulated.
- Flow asymmetries also become pronounced when feedback through plasma conductivity make power deposition nonuniform.
- Pulsed operation of ICPs may aid in reducing these asymmetries.

University of Illinois Optical and Discharge Physics

Pramod_avs_12

PULSED OPERATION OF ICPS

- To check our premise, ICP is first operated in CW mode to attain a steady state.
- CW operation results in asymmetries in species densities.
- CW operation is then followed by a series of pulses.
- Results for time averaged plasma properties for each pulse following CW operation will be shown.

DYNAMICS OF PULSED PLASMAS: Ar

- As the duty cycle increases, the reactor average electron density in the activeglow increases.
- When the power is turned off, T_e falls rapidly as electrons cool by inelastic collisions.

• Ar, 500 W, 10 mTorr, 50 sccm, PRF: 10 kHz, 50% Pramod_avs_14

DYNAMICS OF PULSED PLASMAS: Cl₂

• When power is terminated at the end of the active glow, T_e thermalizes within 15 μ s.

• The resulting increase in dissociative attachment produced a rapid decrease in n_e.

• Cl₂, 300 W, 10 mTorr, 150 sccm, PRF: 10 kHz, 50% University of Illinois Pramod_avs_15 University of Illinois

PULSED ICPS WITH ASYMMETRIC PUMPING

- During CW operation, [Ar+] is offset to the side opposite to the pump port.
- [Ar⁺] shifts to the center of the reactor over a period of several pulses.
- Uniformity is improved as the positive feedback is reduced.
- Diffusion during the afterglow mitigates the non-uniformities.

PULSED ICPS WITH ASYMMETRIC PUMPING

- Through several pulses, the sources and power deposition become more uniform as the positive feedback through plasma conductivity is lessened.
- Ar, 500 W, 10 mTorr, 50 sccm, PRF: 10 kHz, 50%

EFFECT OF DUTY CYCLE

- As the duty cycle is decreased, afterglow is extended.
- Non-uniform sources are absent and mitigating diffusion is active for a longer duration.
- Also, positive feedback during the power pulse occurs for a shorter duration.
- Asymmetries in [Ar⁺] decrease as the duty cycle is reduced from 70% to 30%.
- Ar, 500 W, 10 mTorr, 50 sccm, PRF: 10 KHz

EFFECT OF PRF

- As the PRF is decreased from 20 kHz to 5 kHz, afterglow is increased from 25 to 100 μs.
- Smaller PRFs also increase the activeglow.
- Longer activeglow reinforces non-uniformities.
- Longer afterglow reduces them.
- At 50%, this tradeoff is in favor of afterglow, hence better uniformity is attained at lower PRF.

PULSED CI_2 ICPS WITH ASYMMETRIC PUMPING

- Attachment dominates electron loss during the afterglow which results in residual electrons generally being more uniform.
- Any degree of pulsing which significantly depletes the electrons during the afterglow will break the positive feedback.
- For 30% duty cycle, the electrons are depleted significantly in the afterglow and this results in better azimuthal uniformity.
- Cl₂, 300 W, 10 mTorr, 150 sccm, PRF: 10 kHz Pramod_avs_20

- CW operation of ICPs with asymmetric pumping results in azimuthally asymmetric species densities, fluxes and temperatures.
- During pulsed operation, diffusion smoothens the plasma density profile in the afterglow, providing a more uniform set of initial conditions for the next power pulse.
- The feedback between non-uniform densities and power deposition is also reduced.
- Uniformity is generally improved at lower duty cycles and PRFs.

University of Illinois Optical and Discharge Physics