SCALING OF LOW-PRESSURE IONIZED METAL PVD REACTORS*

Vivek Vyas** and Mark J. Kushner***

Department of Materials Science and Engineering *Department of Electrical and Computer Engineering University of Illinois Urbana IL 61801

> vvyas@uiuc.edu mjk@uiuc.edu http://uigelz.ece.uiuc.edu

> > November 2004

* Work supported by SRC, Novellus Systems Inc. and NSF

AGENDA

- Simulation of Ionized Metal PVD (IMPVD) Reactors
- Ion/Neutral Monte Carlo Simulation
- Scaling of IMPVD Reactors
 - Pressure
 - Magnetic Field Configuration
 - Magnetic Field Strength
 - Power
 - Cu seed layer deposition
- Concluding remarks

IONIZED METAL PHYSICAL VAPOR DEPOSITION

- IMPVD is increasingly being used to deposit diffusion barriers and seed layers onto high aspect ratio trenches.
- As IMPVD operates over a range of pressures (< 1 mTorr to 40 mTorr), analysis requires wide range of capabilities.
 HOLLOW CATHODE MAGNETRON SOURCE*

*Klawuhn et al., J. Vac. Sci. Technol. A 18 (4), 1546 (2000)

CHALLENGES OF SIMULATING IMPVD

- At HCM pressures (< 1 mTorr 10's mTorr), conventional continuum simulations are questionable as transport is highly non-equilibrium.
 - Kn = $\lambda/L \approx 1$ at 1 mTorr
- Simulation of Plasmas:
 - Low Pressure: Kinetic (i.e. Solve Boltzmann's Equations)
 - High Pressure: Continuum Equations
- In principle, continuum equations are simply moments of the Boltzmann's equation. If the distribution functions are known, the equations should be valid at low pressures.
- A hybrid modeling approach has been developed in which the ion and neutral temperatures are kinetically derived and implemented in fluid equations.

DESCRIPTION OF HYBRID METHOD

• An ion/neutral Monte Carlo simulation is used to compute the transport coefficients for computing moments of the Boltzmann's equation.

HYBRID PLASMA EQUIPMENT MODEL (HPEM)

- HPEM is a modular simulator of low pressure plasmas.
- EMM: inductively coupled electric and magnetic fields.
- MCS: EEDs, transport coefficients and source functions.

• FKS:

Ions: Continuity, Momentum Neutrals: Continuity, Momentum Electrons: Drift Diffusion, Energy Electric Potentials: Poisson's Equation

• IMCS: ion/neutrals transport coefficients.

HYBRID PLASMA EQUIPMENT MODEL (HPEM)

• Continuity (heavy species) :

$$\frac{\partial N_i}{\partial t} = \nabla \cdot \left(N_i \vec{v}_i \right) + S_i$$

- Momentum (heavy species): $\frac{\partial (N_i \vec{v}_i)}{\partial t} = \frac{q_i}{m_i} N_i (\vec{E}_s + \vec{v}_i \times \vec{B}_s) - \frac{1}{m_i} \nabla P_i + \sum_j N_i N_j k_{ij} (\vec{v}_j - \vec{v}_i) - \nabla \cdot \overline{\tau}_i - \nabla \cdot (N_i \vec{v}_i \vec{v}_i)$
- Energy (heavy species) :

$$\frac{\partial N_{i} c_{v} T_{i}}{\partial t} = \nabla \cdot \kappa_{i} \nabla T_{i} - P_{i} \nabla \cdot \vec{v}_{i} - \nabla \cdot (\vec{\varphi}_{i} \varepsilon_{i}) + \frac{N_{i} q_{i}^{2}}{m_{i} v_{i}} E_{s}^{2} + \frac{N_{i} q_{i}^{2} v_{i}}{m_{i} (v_{i}^{2} + \omega^{2})} E^{2} + \sum_{j} \frac{m_{ij}}{m_{i} + m_{j}} N_{i} N_{j} R_{ij} k(T_{j} - T_{i})$$

IMCS

ION/NEUTRAL MONTE CARLO SIMULATION (IMCS)

- Pseudoparticles are launched based on source functions.
- Particles representing the injected gas species are launched from inlet nozzles based on flow rates.
- Particle trajectories are followed till they reach the pump port or get consumed in a collision.
- lons and neutrals striking the wall are reflected back as neutrals with a specified sticking probability.

MODEL VALIDATION : GAS TEMPERATURE

- The model was validated by comparison of gas temperatures in a GEC Reference cell reactor*
- The dominant heating mechanism for Ar is symmetric charge exchange with energetic Ar⁺ ions.
- T-Ar increases with pressure due to a higher charge exchange reaction rate.

*G. A. Hebner, J. Appl. Phys. 80 (5), 2624 (1996)

MODEL VALIDATION : ION TEMPERATURE

- T-Ar peaks in the center of the reactor due to higher Ar⁺ density.
- T-Ar⁺ increases with radius due to the larger electric fields at the periphery of the reactor.

Ar (200 W, 10 mTorr, 10 sccm)

OPERATING CONDITIONS

- Pressures: 1 30 mTorr
- Powers: 10 80 kW
- DC Bias: 150 500 V
- Ar Flows: 25-250 sccm
- IMCS Species: Ar, Ar⁺, Cu, Cu⁺, Cu^{*}

PLASMA DENSITY: PRESSURE

- Peak in electron
 density decreases
 and shifts from the
 target to the center of
 the reactor with
 decrease in pressure.
- Mean free path and conductivity of electrons increase with decrease in pressure.

^{• 10} kW POWER

FLUXES TO SUBSTRATE : PRESSURE

- Cu flux on the wafer increases with decrease in pressure due to the larger contribution of non-thermal Cu.
- The ionized fraction of Cu flux and the total ion flux on the wafer increases with pressure due to more ionizing collisions.

MONTE CARLO FEATURE PROFILE MODEL(MCFPM)

- Plasma surface interactions were investigated using MCFPM.
- MCFPM predicts time and spatially dependent deposition profiles using ion and neutral fluxes from HPEM.

FEATURE PROFILES: PRESSURE

- Ion energies increase and IEDs narrow at lower pressures due to the increase in floating potential.
- Reduced Overhang (Side Coverage/Top Coverage) is observed at higher pressures due to higher ionization levels.

Overhang: 0.55 Overhang: 0.4

```
CD=65 nm, A.R. = 2.5:1
```

HCM : B-FIELD CONFIGURATION

- HCM relies on magnetic fields to generate highdensity plasma within the volume of the cathode.
- A strong E×B force along the target surface results in efficient sputtering.
- The cusp in magnetic field near the target opening acts as an "aperture" to extract plasma from within the target volume.

IONIZATION: B-FIELD CONFIGURATION

As the location of cusp is moved closer to the target opening, the ionization peak increases and shifts from the target to the center of the reactor.

University of Illinois • 10 mTorr, 10 kW Optical and Discharge Physics

FLUXES: B-FIELD CONFIGURATION

- As the location of cusp is moved closer to the target opening, the Cu flux and Cu ion fraction increase, and the total ion flux decreases.
- At higher cusp locations, reduced magnetic confinement results is less efficient sputtering and a reduced Cu ion fraction and a larger total ion flux.

^{• 10} mTorr, 10 kW

TRENCH EVOLUTION: B-FIELD CONFIGURATION

Overhang: 0.18 Overhang: 0.50 Overhang: 0.26

CD = 65 nm, A.R. = 2.5:1

University of Illinois Optical and Discharge Physics

 Smaller ion flux at the wafer for intermediate cusp locations results in larger overhangs.

• 10 mTorr, 10 kW

FLUXES: MAGNETIC FIELD STRENGTH

The non-thermal [Cu] and total Cu flux onto the substrate increase with • B-field upto 500 G; both decrease for higher B-field.

VIVEK AVS04 20

IONIZATION: B-FIELD STRENGTH

- The ion fraction of Cu flux is a minimum for B = 500 G, corresponding to the maximum in non-thermal [Cu] and total ion flux.
- The ionized Cu fraction scales inversely with non-thermal [Cu].

TRENCH EVOLUTION: MAGNETIC FIELD STRENGTH

• The overhang is maximum for B = 25 G, corresponding to a minimum in total ion flux onto the wafer.

25 G 500 G 2000 G

• 10 mTorr, -200 V DC Bias

Overhang: 0.62 Overhang: 0.34 Overhang: 0.33 CD = 65 nm, A.R. = 2.5:1 U

- The total Cu flux increases and Cu ion fraction decreases with DC power.
- The total ion flux increases with DC power resulting in a reduced • overhang.

- A hybrid modeling approach has been developed in which the ion and neutral transport coefficients are kinetically derived and implemented in fluid equations.
- Electron density and sputter densities decrease with decrease in pressure.
- IED's shift to higher energies with decrease in pressure.
- The conditions for maximum ion flux on the wafer were investigated.
- Overhang in Cu seed layer deposition strongly correlates with the total ion flux incident on the wafer.