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IONIZED METAL PHYSICAL VAPOR DEPOSITION

e [IMPVD is increasingly being used to deposit diffusion barriers and
seed layers onto high aspect ratio trenches.

e As IMPVD operates over a range of pressures (<1 mTorr to 40
mTorr), analysis requires wide range of capabilities.
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CHALLENGES OF SIMULATING IMPVD

e At HCM pressures (<1 mTorr —10’s mTorr), conventional
continuum simulations are questionable as transport is highly
non-equilibrium.

e Kn=A/L~1at1mTorr

e Simulation of Plasmas:
e Low Pressure: Kinetic (i.e. Solve Boltzmann’s Equations)
e High Pressure: Continuum Equations

e In principle, continuum equations are simply moments of the
Boltzmann’s equation. If the distribution functions are known,
the equations should be valid at low pressures.

e A hybrid modeling approach has been developed in which the
ion and neutral temperatures are kinetically derived and
implemented in fluid equations.
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DESCRIPTION OF HYBRID METHOD

BOLTZMANN’S “GONTINUUM”
EQUATIONS > MOMENTS "  TRANSPORT
“KINETIC”

ION/NEUTRAL flv

MONTE CARLO [ (v)

SIMULATION

e An ion/neutral Monte Carlo simulation is used to compute
the transport coefficients for computing moments of the
Boltzmann’s equation.
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HYBRID PLASMA EQUIPMENT MODEL (HPEM)

e HPEM is a modular simulator of low
pressure plasmas.

ELECTROMAGNETICS E.B | ELECTRON MONTE CARLO
MODULE (EMM) > SIMULATION (MCS)

e EMM: inductively coupled electric and

<

magnetic fields. \&, 3

e MCS: EEDs, transport coefficients and
source functions. MDBULE (RN
e FKS: Y
lons: Continuity, Momentum NTl T»
Neutrals: Continuity,Momentum

Electrons: Drift Diffusion, Energy
Electric Potentials: Poisson’s Equation it e paad

e IMCS: ion/neutrals transport coefficients.
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HYBRID PLASMA EQUIPMENT MODEL (HPEM)
e Continuity (heavy species) :
ON,
ot
e Momentum (heavy species) : IMCS
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ION/NEUTRAL MONTE CARLO SIMULATION (IMCS)

Pseudoparticles are launched
based on source functions.

Particles representing the
injected gas species are
launched from inlet nozzles
based on flow rates.

Particle trajectories are
followed till they reach the
pump port or get consumed in a
collision.

lons and neutrals striking the
wall are reflected back as
neutrals with a specified
sticking probability.
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MODEL VALIDATION : GAS TEMPERATURE

The model was validated by
comparison of gas temperatures in
a GEC Reference cell reactor*

The dominant heating mechanism
for Ar is symmetric charge
exchange with energetic Ar* ions.

T-Ar increases with pressure due
to a higher charge exchange
reaction rate.

*G. A. Hebner, J. Appl. Phys. 80 (5), 2624 (1996)
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T-Ar (K)

MODEL VALIDATION : ION TEMPERATURE

e T-Ar peaks in the center of the reactor due to higher Ar* density.

e T-Ar* increases with radius due to the larger electric fields at the
periphery of the reactor.
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OPERATING CONDITIONS

e Pressures: 1-30mTorr

e Powers: 10 — 80 kW

e DC Bias: 150 - 500 V

e Ar Flows: 25-250 sccm

e IMCS Species: Ar, Ar*, Cu, Cu*,
Cu*
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PLASMA DENSITY: PRESSURE
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Peak in electron
density decreases
and shifts from the
target to the center of
the reactor with
decrease in pressure.

Mean free path and
conductivity of
electrons increase
with decrease in
pressure.

e 10 kW POWER
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FLUXES TO SUBSTRATE : PRESSURE

e Cu flux on the wafer increases with decrease in pressure due to the

larger contribution of non-thermal Cu.

e The ionized fraction of Cu flux and the total ion flux on the wafer
increases with pressure due to more ionizing collisions.
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MONTE CARLO FEATURE PROFILE MODEL(MCFPM)

e Plasma surface interactions were investigated using MCFPM.

e MCFPM predicts time and spatially dependent deposition profiles using
ion and neutral fluxes from HPEM.

IED

Hybrid Plasma Equipment Model
(HPEM)

Fluxes | Energy
Distributions

Monte Carlo Feature Profile Model
(MCFPM)
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FEATURE PROFILES: PRESSURE

e lon energies increase and IEDs narrow at lower pressures due to the
increase in floating potential.

e Reduced Overhang (Side Coverage/Top Coverage) is observed at higher
pressures due to higher ionization levels.
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HCM : B-FIELD CONFIGURATION

e HCM relies on magnetic
fields to generate high-
density plasma within the

* 2550 volume of the cathode.
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FLUXES: B-FIELD CONFIGURATION
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As the location of cusp is
moved closer to the target
opening, the Cu flux and
Cu ion fraction increase,
and the total ion flux
decreases.

At higher cusp locations,
reduced magnetic
confinement results is less
efficient sputtering and a
reduced Cu ion fraction and
a larger total ion flux.

e 10 mTorr, 10 kW
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TRENCH EVOLUTION: B-FIELD CONFIGURATION

Cusp Location -Z
Z=11cm Z=16cm Z=20cm

e Smaller ion flux at the
wafer for intermediate
cusp locations results in
larger overhangs.
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CD =65 nm, A.R. = 2.5:1
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FLUXES: MAGNETIC FIELD STRENGTH

e The non-thermal [Cu] and total Cu flux onto the substrate increase with
B-field upto 500 G; both decrease for higher B-field.
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IONIZATION: B-FIELD STRENGTH

e The ion fraction of Cu flux is a minimum for B = 500 G, corresponding to
the maximum in non-thermal [Cu] and total ion flux.

e The ionized Cu fraction scales inversely with non-thermal [Cul].
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TRENCH EVOLUTION: MAGNETIC FIELD STRENGTH

e The overhang is maximum for B = 25 G, corresponding to a minimum in
total ion flux onto the wafer.
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IONIZATION: POWER

e The total Cu flux increases and Cu ion fraction decreases with DC power.

e The total ion flux increases with DC power resulting in a reduced
overhang.
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CONCLUDING REMARKS

e A hybrid modeling approach has been developed in which
the ion and neutral transport coefficients are kinetically
derived and implemented in fluid equations.

e Electron density and sputter densities decrease with
decrease in pressure.

e [ED’s shift to higher energies with decrease in pressure.

e The conditions for maximum ion flux on the wafer were
investigated.

e Overhang in Cu seed layer deposition strongly correlates
with the total ion flux incident on the wafer.
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