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ION IMPLANTATION
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keV) techniques are typically used Target Manipulator

for depths > 100s nm.
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Shallow junctions
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e Shrinking critical dimensions are
Increasing demands for ultra-
shallow junctions (< 10s nm)

e |deally for ultra-shallow junctions
(20-50 nm), dopant ions should
have energies < 500 eV.




ION IMPLANTATION

e Extending beam-line ion implantation to ultra-low energies is
difficult:

e Line-of-sight process
e Space charge induced divergence limits currents
e Low throughputs

e Although techniques exist to overcome space charge limitations
they have drawbacks:

e Auto-neutralization produces loss of beam current.
e Deceleration: bimodal energy distribution on the wafer
e Molecular ion implantation: reproducibility issues.

e Plasmaion implantation is an alternative approach.

e Pulsed plasma source containing dopant ions
e lons accelerated across the sheath and implanted in the wafer
e Pulses repeated until desired dose is achieved.
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P2LAD (PULSED PLASMA DOPING)

® P2LAD s a pulsed plasma technique for low energy ion
iImplantation. A plasma is produced on every pulse (many kHz).

® The substrate is pulsed negative to Anode
the desired implant voltage.

® |ons are extracted from the plasma,
accelerated across the sheath and Plasma region
iImplanted into the wafer. ® 000 0 66 6

Sheath

® Etching, contamination and wafer
charge damage are all improved with Cathode
reduced plasma-on time.

® High throughput at low energies. Si-Wafer Pulsed Bias
® Small footprint of tool. ‘u_

Ref: VSEA ICOPS 2002
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P2LAD CHALLENGES

e Junction depth is determined by bias voltage and identity of ion
species produced in the plasma:

e Depends on geometry of source and operating conditions
(pressure, gas mixture, flow rate, sheath thickness)

® Run-to-run doping repeatability related to controlling plasma
parameters:

® Plasma uniformity over wide range of implant energies
® Materials have different secondary electron coefficients

® Process Challenges:

® Finite pulse rise/fall times produce non-monoenergetic ions.

® Short pulse-on (us) followed by long after-glow period (ms)
may produce unwanted etching.
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HYBRID PLASMA EQUIPMENT MODEL (HPEM)

e A modular simulator addressing low
temperature, low pressure plasmas.
. EMM EETM
e Electromagnetics Module:
. . E¢ Solve for
o E|eCtrOmagneth FleldS Solve for_ ™ Boltzmann and electron
. . Maxwell’'s equations B energy equations or
e Magneto-static Fields Electron Monte-Carlo
simulation
e Electron Energy Transport Module: /
o wl |3
e Electron Temperature x-fi/ .
e Electron Impact Sources s
e Transport Coefficients
Fluid equations
e Fluid Kinetics Module: Poissor's equation
. Quasineutrality
°® DenSItIeS approximation
e Momenta
e Temperature of species
e Electrostatic Potentials
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P°LAD: REACTOR GEOMETRY
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® Inductively Coupled Plasmas (ICPs) with pulsed DC biasing.
® <10s mTorr, 10s kHz, 100s W — kW
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P2LAD: OPERATING CONDITIONS

ANKUR_AVS05_07

Quantity Base Case Value
Pressure (mTorr) 10
Power (W) 500
Gas NF, (sulgrlgsg);ate for
Flow-rate (sccm) 100
DC Bias (kV) 1
35 us pulse width
Pulse 5 us pulserise
5 us pulse fall
Frequency (kHz) ~8
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P2LAD: DC VOLTAGE PULSE
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e Finite rise and fall times (may depend on voltage) produce
structure in ion energy distributions to substrate and may
cause plasma instabilities.
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Ar/NF;: NF,* DENSITY

_l NF2+ _l

NF2+

1.2E+10
ul . 5.6E+09

2.7E+09
] B 13E+00

6.0E+08
u| 2 9E+08

1.4E+08

1.2E+10
ul . 5.6E+09

2.7E+09
] B 13E+00

6.0E+08
u| 2 9E+08

1.4E+08

e 1,000 V; Max: 1.4 x 10 cm3 e 10,000 V; Max: 1.4 x 10 cm-3

e Plasma density peaks near the coils — sheath thinner on the
outside of the substrate. Note pulsation due to negative ion-

positive ion transport.

e 10 mTorr, 500 W, pulsed DC, 100 sccm, Ar/NF; = 0.8/0.2

0.01 "M ) BEmE1.0 ANIMATION SLIDE
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Ar/INF;: ELECTRON DENSITY
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e 2500 V; Max: 3.7 x 1019¢cm"-3 e 10,000 V; Max: 4.5 x 1019cm-3

e Electrons rapidly move out of sheath. lons slowly accelerated in
opposite direction. Impulsive charge separation launches electro-

static waves.

e Slow “infilling” of sheath at higher bias with thicker sheath.
e 10 mTorr, 500 W, pulsed DC, 100 sccm, Ar/NF; = 0.8/0.2

001 "HEN ) BEmE1.0 ANIMATION SLIDE
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ION ENERGY ANGULAR DISTRIBUTION: PULSED DC BIAS
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e IEAD peaks near applied

dc bias voltage.

Angular distribution
narrows with bias on;
broad without bias.

Longer “tail” with bias due
to sheath thickening (ion
transit time increases and
becomes collisional).

Asymmetry results from
sheath structure.
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ION ENERGY ANGULAR DISTRIBUTION: ICP POWER
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Decreasing sheath thickness
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e Sheath becomes thinner
with increasing ICP power
and plasma density.

e Peak energy increases
Increasing ICP power due
to smaller transit time.

e “Tail” is less prominent
with increasing power as
Is less collisional and ion
transit time decreases.

MiN -  MAX
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ICP POWER: TOTAL ION FLUX

16 ' . . e Total ion flux increases

1000 W with increasing ICP power
with more light ions (more

dissociation).

750 W e Peak energy increases
I i with increasing ICP power
500 W due to shorter transit
times of lighter ions.

-
N
| |
[ |
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e 10 mTorr, -1000 V pulsed
! ! L DC, Ar/NF; = 0.8/0.2, 100
sccm

Radius (cm)
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ICP POWER: ION DENSITY, SHEATH THICKNESS

e lon density increases with

|| || || || | | 20 . .
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_. 16} _
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EXTENDED REACTOR DES

GN: [e], [NF,’]

e Radius: 40 cm; Height:
22 cm

e Source of ions moved
further away

e Note that the plasma
density over wafer is
very uniform.

e Uniform sheath
structure; affects IEAD
asymmetry

e 10 mTorr, 500 W, -10,000
V single pulse DC, 100
sccm, Ar/NF; = 0.8/0.2

e [NF,*]; Max: 1.1 x 10 cm-3

ANIMATION SLIDE
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IEAD: STANDARD REACTOR DESIGN

Radius (R): 31 cm; Height (£)] 22 cm R: 31 cm; Z: 22 cm
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e IEAD asymmetry may result in
nonuniform dopant profile.
0
e Control of IEAD is achieved by -15

Angle (deg)
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changing radial profile of ion flux,
sheath structure.

o 10 mTOI‘I‘, 500 W, '10,000 V pU|Sed lowa State University
DC, 100 sccm, Ar/NF;=0.8/0.2 Optical and Discharge Physics
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Energy (eV)

IEAD: EXTENDED REACTOR DESIGN

Radius (R): 40 cm; Height (Z):]44 cm

l
|

|
|

__JL__L___L___\:.--—-%"'- Sheath structure

i lon Trajectory

10500

7000

3500

Inner

Center

e x [ Sk i L —gma
A e T *_anf'ﬂ'g‘

QOuter

|

!

:

"1

Inner Center Quter

uJ

ANKUR_AVS05_17

0.001
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o |[EAD asymmetry:
e Non-uniform ion
density distribution

e Source of ions Is off-
axis near the coils.

e lons preferentially
approach from where
lon density is
maximum.

e Larger reactor enables
lons to have diffusion
dominated center peak
profile.

e Radius: 40 cm; Height: 44
cm
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IEAD: EXTENDED REACTOR DESIGN

Radius (R): 40 cm; Height (2):
O

22 cm

lon Trajectory
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e Radius: 40 cm; Height: 22 cm

e IEAD symmetry restored; angular width

increases with radius.

e Alternately, source of ions can be
controlled by changing coil positions.
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IEAD: HORIZONTAL COILS

Radius (R): 31 cm; Height (Z):|22 cm
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e IEAD asymmetry still exists; not as
prominent in standard reactor.
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o Alternately, control can be achieved by

repositioning shield ring. Angle (deg)

0.001 NN I 1.0

e 10 mTorr, -10,000 V pulsed DC, Ar/NF; =

0.8/0.2, 100 sccm lowa State University
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CONCLUDING REMARKS

e Pulsed plasma doping was investigated for low energy ion
Implantation to form ultra-shallow junctions.

e DC Voltage pulse characteristics important

e If pulseis not long enough, sheath does not completely
develop
o Affects dosimetry/pulse

e Time averaged IEADs

e Peak energy near applied dc bias voltage

e Increasing bias narrows the angular distribution

e Collisional sheath and finite pulse rise times: long transit
time — low energy ions form “tail”

e Peak energy increases with increasing ICP Power; less
significant “tail” as a result of decreasing sheath thickness
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ANKUR_AVSO05_ 20 Optical and Discharge Physics



CONCLUDING REMARKS

e Launch of electrostatic waves can affect plasma stability.

e Due to impulse of applied bias causing charge separation.
e Slower application of bias must be traded off against less
mono-energetic IEADs.

e Angular distributions are skewed at high biases due to non-
uniform plasma and sheath thickness; addressable by redesign
of reactor.

e Uniformity achieved by changing sheath structure
e Redesign includes changing coil positions, reactor
dimensions or shield ring position
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