EFFECT OF REACTOR GEOMETRY ON ION ENERGY DISTRIBUTIONS FOR PULSED PLASMA DOPING (P²LAD)*

Ankur Agarwal^{a)} and Mark J. Kushner^{b)}

^{a)}Department of Chemical and Biomolecular Engineering University of Illinois Urbana, IL 61801, USA Email: aagarwl3@uiuc.edu

^{b)}Department of Electrical and Computer Engineering lowa State University Ames, IA 50011, USA Email: mjk@iastate.edu

http://uigelz.ece.iastate.edu

52nd AVS Symposium, November 2005

* Work supported by the VSEA, Inc. NSF and SRC.

AGENDA

- Ion Implantation
- Pulsed Plasma Doping (P²LAD)
- Approach and Methodology
- Operating Conditions
- Plasma Characteristics
- Ion Energy Distribution Functions
 - Substrate Bias Voltage
 - Power
 - Reactor Design
- Summary

ION IMPLANTATION

- Doping by ion implantation changes band structure (n-type or p-type and controls conductivity)
- Beam-line ion implantation (100s keV) techniques are typically used for depths > 100s nm.
- Shrinking critical dimensions are increasing demands for ultrashallow junctions (< 10s nm)
- Ideally for ultra-shallow junctions (20-50 nm), dopant ions should have energies < 500 eV.

Ref: P.K. Chu et al., Mat Sci Eng R, R17, 207 (1996)

ION IMPLANTATION

- Extending beam-line ion implantation to ultra-low energies is difficult:
 - Line-of-sight process
 - Space charge induced divergence limits currents
 - Low throughputs
- Although techniques exist to overcome space charge limitations they have drawbacks:
 - Auto-neutralization produces loss of beam current.
 - Deceleration: bimodal energy distribution on the wafer
 - Molecular ion implantation: reproducibility issues.
- Plasma ion implantation is an alternative approach.
 - Pulsed plasma source containing dopant ions
 - Ions accelerated across the sheath and implanted in the wafer
 - Pulses repeated until desired dose is achieved.

P²LAD (PULSED PLASMA DOPING)

- P²LAD is a pulsed plasma technique for low energy ion implantation. A plasma is produced on every pulse (many kHz).
- The substrate is pulsed negative to the desired implant voltage.
- Ions are extracted from the plasma, accelerated across the sheath and implanted into the wafer.
- Etching, contamination and wafer charge damage are all improved with reduced plasma-on time.
- High throughput at low energies.
- Small footprint of tool.

P²LAD CHALLENGES

- Junction depth is determined by bias voltage and identity of ion species produced in the plasma:
 - Depends on geometry of source and operating conditions (pressure, gas mixture, flow rate, sheath thickness)
- Run-to-run doping repeatability related to controlling plasma parameters:
 - Plasma uniformity over wide range of implant energies
 - Materials have different secondary electron coefficients
- Process Challenges:
 - Finite pulse rise/fall times produce non-monoenergetic ions.
 - Short pulse-on (μs) followed by long after-glow period (ms) may produce unwanted etching.

HYBRID PLASMA EQUIPMENT MODEL (HPEM)

- A modular simulator addressing low temperature, low pressure plasmas.
- Electromagnetics Module:
 - Electromagnetic Fields
 - Magneto-static Fields
- Electron Energy Transport Module:
 - Electron Temperature
 - Electron Impact Sources
 - Transport Coefficients
- Fluid Kinetics Module:
 - Densities
 - Momenta
 - Temperature of species
 - Electrostatic Potentials

P²LAD: REACTOR GEOMETRY

• Inductively Coupled Plasmas (ICPs) with pulsed DC biasing.

• < 10s mTorr, 10s kHz, 100s W – kW

P²LAD: OPERATING CONDITIONS

Quantity	Base Case Value
Pressure (mTorr)	10
Power (W)	500
Gas	NF ₃ (surrogate for BF ₃)
Flow-rate (sccm)	100
DC Bias (kV)	1
	35 μ s pulse width
Pulse	5 μs pulse rise
	5 μs pulse fall
Frequency (kHz)	~8

P²LAD: DC VOLTAGE PULSE

 Finite rise and fall times (may depend on voltage) produce structure in ion energy distributions to substrate and may cause plasma instabilities.

Ar/NF₃: NF₂⁺ DENSITY

• 1,000 V; Max: 1.4 x 10¹⁰ cm⁻³

1.0

• 10,000 V; Max: 1.4 x 10¹⁰ cm⁻³

- Plasma density peaks near the coils sheath thinner on the outside of the substrate. Note pulsation due to negative ionpositive ion transport.
- 10 mTorr, 500 W, pulsed DC, 100 sccm, Ar/NF₃ = 0.8/0.2

ANIMATION SLIDE

Iowa State University Optical and Discharge Physics

ANKUR_AVS05_09

Ar/NF₃: ELECTRON DENSITY

- 2,500 V; Max: 3.7 x 10¹⁰ cm⁻³ 10,000 V; Max: 4.5 x 10¹⁰ cm⁻³
- Electrons rapidly move out of sheath. Ions slowly accelerated in opposite direction. Impulsive charge separation launches electrostatic waves.
- Slow "infilling" of sheath at higher bias with thicker sheath.
- 10 mTorr, 500 W, pulsed DC, 100 sccm, Ar/NF₃ = 0.8/0.2

1.0

0 0

ANKUR_AVS05_10

ANIMATION SLIDE

ION ENERGY ANGULAR DISTRIBUTION: PULSED DC BIAS

• IEAD peaks near applied dc bias voltage.

- Angular distribution narrows with bias on; broad without bias.
- Longer "tail" with bias due to sheath thickening (ion transit time increases and becomes collisional).
- Asymmetry results from sheath structure.

ION ENERGY ANGULAR DISTRIBUTION: ICP POWER

- Sheath becomes thinner with increasing ICP power and plasma density.
- Peak energy increases increasing ICP power due to smaller transit time.
- "Tail" is less prominent with increasing power as is less collisional and ion transit time decreases.

ICP POWER: TOTAL ION FLUX

- Total ion flux increases with increasing ICP power with more light ions (more dissociation).
- Peak energy increases with increasing ICP power due to shorter transit times of lighter ions.
- 10 mTorr, -1000 V pulsed DC, Ar/NF₃ = 0.8/0.2, 100 sccm

- Ion density increases with increasing ICP power.
- Sheath thickness decreases and is less collisional.
- Tail of IEAD extends to lower energies due to shorter crossing times.
 - 10 mTorr, -1000 V pulsed DC, Ar/NF₃ = 0.8/0.2, 100 sccm

EXTENDED REACTOR DESIGN: [e], [NF₂⁺]

- Radius: 40 cm; Height: 22 cm
- Source of ions moved further away
- Note that the plasma density over wafer is very uniform.
- Uniform sheath structure; affects IEAD asymmetry
- 10 mTorr, 500 W, -10,000
 V single pulse DC, 100
 sccm, Ar/NF₃ = 0.8/0.2
- [NF₂+]; Max: 1.1 x 10¹⁰ cm⁻³

IEAD: STANDARD REACTOR DESIGN

- IEAD asymmetry may result in nonuniform dopant profile.
- Control of IEAD is achieved by changing radial profile of ion flux, sheath structure.
 - 10 mTorr, 500 W, -10,000 V pulsed DC, 100 sccm, Ar/NF₃=0.8/0.2

IEAD: EXTENDED REACTOR DESIGN

- IEAD asymmetry:
 - Non-uniform ion density distribution
 - Source of ions is offaxis near the coils.
 - Ions preferentially approach from where ion density is maximum.
- Larger reactor enables ions to have diffusion dominated center peak profile.
- Radius: 40 cm; Height: 44
 cm

IEAD: EXTENDED REACTOR DESIGN

IEAD: HORIZONTAL COILS

- IEAD asymmetry still exists; not as prominent in standard reactor.
- Alternately, control can be achieved by repositioning shield ring.
- 10 mTorr, -10,000 V pulsed DC, Ar/NF₃ = 0.8/0.2, 100 sccm

Iowa State University Optical and Discharge Physics

ANKUR_AVS05_19

CONCLUDING REMARKS

- Pulsed plasma doping was investigated for low energy ion implantation to form ultra-shallow junctions.
- DC Voltage pulse characteristics important
 - If pulse is not long enough, sheath does not completely develop
 - Affects dosimetry/pulse
- Time averaged IEADs
 - Peak energy near applied dc bias voltage
 - Increasing bias narrows the angular distribution
 - Collisional sheath and finite pulse rise times: long transit time – low energy ions form "tail"
 - Peak energy increases with increasing ICP Power; less significant "tail" as a result of decreasing sheath thickness
 - Iowa State University Optical and Discharge Physics

CONCLUDING REMARKS

- Launch of electrostatic waves can affect plasma stability.
 - Due to impulse of applied bias causing charge separation.
 - Slower application of bias must be traded off against less mono-energetic IEADs.
- Angular distributions are skewed at high biases due to nonuniform plasma and sheath thickness; addressable by redesign of reactor.
 - Uniformity achieved by changing sheath structure
 - Redesign includes changing coil positions, reactor dimensions or shield ring position