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MICRODISCHARGE PLASMA SOURCES

Microdischarges are plasma devices which leverage pd scaling to
operate dc atmospheric glows 10s —100s um in size.

e Few 100s V, a few mA

Although similar to PDP cells, MDs are usually dc devices which
largely rely on nonequilibrium beam components of the EED.

Electrostatic nonequilibrium results from their small size. Debye
lengths and cathode falls are commensurate with size of devices.
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e Ref: Kurt Becker, GEC 2003
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APPLICATIONS OF MICRODISCHARGES

e MEMS fabrication techniques enable innovative structures for
displays and detectors.

e MDs can be used as microthrusters in small spacecraft for
precise control which are requisites for array of satellites.

FLOW THRU MICRO-
DISCHARGE

HOT GAS TO
NOZZLE

Ewing Technology
Associates

Ref: http://www.design.caltech.edu/micropropulsion
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DESCRIPTION OF MODEL

e To investigate microdischarge sources, nonPDPSIM, a 2-
dimensional plasma code was developed with added capabilities
for pulsed operation.

Finite volume method in rectilinear or cylindrical unstructured
meshes.

Implicit drift-diffusion-advection for charged species
Navier-Stokes for neutral species

Poisson’s equation (volume, surface charge, material
conduction)

Secondary electrons by impact, thermionics, photo-emission
Electron energy equation coupled with Boltzmann solution
Monte Carlo simulation for beam electrons.

Circuit, radiation transport and photoionization, surface
chemistry models.
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DESCRIPTION OF MODEL: CHARGED PARTICLE, SOURCES

e Continuity (sources from electron and heavy particle collisions,
surface chemistry, photo-ionization, secondary emission), fluxes
by modified Sharfetter-Gummel with advective flow field.
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ELECTRON ENERGY, TRANSPORT COEFFICIENTS

e Bulk electrons: Electron energy equation with coefficients
obtained from Boltzmann’s equation solution for EED.
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e Beam Electrons: Monte Carlo
Simulation

e Cartesian MCS mesh
superimposed on unstructured
fluid mesh. Construct Greens
functions for interpolation
between meshes.
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DESCRIPTION OF MODEL: NEUTRAL PARTICLE TRANSPORT

e Fluid averaged values of mass density, mass momentum and
thermal energy density obtained using unsteady, compressible
algorithms.
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e Individual species are addressed with superimposed diffusive
transport.

N, (t+ At) = Ni(t)—v.[vf - DiNTV( Ni(lt\:“t)]}sv +S,
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GEOMETRY AND

MESH e Geometry A e Geometry B

B MRPLI LTI LI

e Plasma dia: 150 um at inlet, ;5';:'_.f.‘f.‘_{_'-_'_-'.f{.'-.;_-‘f,f‘_{_,-i‘.;'__-,':._' 5 =

250 um at cathode. L SR
e Electrodes 130 um thick. R RS SKIK ‘
e Dielectric gap 1.5 mm.

e Geometry B: 1.5 mm dielectric
above the cathode.

e Fine meshing near electrodes,
less refined near exit.

e Anode grounded; cathode
bias varied based on power
deposition (0.25- 1.0 W).

e 10 sccm Ar, 30 Torr at inlet,
10 Torr at exit.

0 Radius(cm) 05 0 Radius (cm) 0.5
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EXPERIMENT: GEOMETRY

Boron

Nitride \ / Quartz

L/ i; I
Argon Gas Vacuum

P~2-4kPa P~01tolPa
|
Tantalum
/1 Electrodes

Thermocouple

e Modeled geometry similar to experimental setup.
e Plume characterized by densities of excited states.

e Ref: John Slough, J.J. Ewing, AIAA 2005-4074 : )
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CHARGED SPECIES: GEOMETRY A
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e Power deposition occurs in the cathode fall by
collisions with hot electrons. e 10 sccm Ar, 0.5 W

e Very high electric fields near cathode.
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NEUTRAL FLUID PROPERTIES: GEOMETRY A
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e Plume extends downstream, can be used
for diagnosis.

e Gas heating and consequent expansion is e 10 sccm Ar, 30 —10 Torr
a source of thrust. e 0.5 W.

e Ref: John Slough, J.J. Ewing, AIAA 2005-4074 lowa State University
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VELOCITY INCREASE WITH DISCHARGE

Without
discharge

discharge

| Vi 130 m/s i }5 Vi 170 m/s

o WHEN 160

Axial velocity (m/s)
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Animation
0—-0.55ms

Gas heating and
subsequent expansion
causes increase in velocity.

Steady state after one or
two bursts of flow.

At high plasma density,
momentum transfer
between charged species
and neutrals is also
Important.

e 10 sccm Ar, 30 Torr at inlet,
10 Torr at exit.

e 0.5 Watts.
e Power turned on at 0.5 ms.
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POWER DEPOSITION: IONIZATION SOURCES
e 05W o1 0W T -

Max 5 x 102 Max 7.5 x 102 3 Max 1.5x 102 Max 2 x 102

0.1cm 0.1 cm

0.5 mm 0.5 mm

Bulk ionization (cm=3sec?) 1 i BF B 100 Beam ionization (cm3sec?)

e |onization rates increase with power.

e Beam electrons are equally as important as bulk electrons.

e 10 sccm Ar, 30 Torr at inlet, 10 Torr at exit. - -
lowa State University
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POWER DEPOSITION: PLASMA PROPERTIES
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e Hotter gases lead to higher AV and higher thrust production.
e Increase in mean free path due to rarefaction may affect power

deposited to neutrals.

e With increasing [e], increase in production of electronically

excited states.

e 10sccm Ar, 30 Torr at inlet, 10 Torr at exit.
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POWER DEPOSITION: FLOW VELOCITY
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BASE CASE RESULTS: GEOMETRY B
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e Electrons are confined, discharge operates in an unsteady regime.
e |onization pulses travel towards anode.

e Power densities are greater than that of Geometry A.

* 10 sccm Ar, 30 - 10 Torr lowa State University
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VELOCITY INCREASE: GEOMETRY B
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POWER DEPOSITION: GEOMETRY B
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e Discharge operates in normal glow, current increases with power,
whereas voltage marginally increases.

e [e] increases substantially with increase in power.
e With increasing [e], charge buildup on the dielectric can be high.

e 10sccm Ar, 30 Torr at inlet, 10 Torr at exit. lowa State University

AVS2005_RAA_18 Optical and Discharge Physics



CURRENT VOLTAGE CHARACTERISTICS

10

e Operating voltage for
geometry A remains
almost a constant (260 V),
whereas slight changes
observed for geometry B.
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INCREMENTAL THRUST

e Thrust calculated by:

F :C;_Tve + Ae(Pe - Pa)

e Increase in thrust is the rate of momentum transfer to the neutrals
when the discharge is switched on.

e (), (27
dt oulse dt

e Meaningful incremental thrust occurs when power deposited to
plasma is greater than that contained in the flow.

nopulse
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INCREMENTAL THRUST: EFFECT OF POWER

12

10 +
e Thrust increases with power 8| Geometry A
deposited. N
e Zero-power thrust: 5 6f /
L Geometry B
Geometry A: 8uN 4l
Geometry B: 12 uN
e Geometry has marginal effect T
on incremental thrust. 0 | | 1 |
0.00 0.25 0.50 0.75 1.00 1.25

Power (Watts)

e 10 sccm Ar, 30 Torr upstream, 10 Torr downstream.
e Power turned on at 0.5 ms
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CONCLUDING REMARKS

e An axially symmetric microdischarge was computationally
Investigated with potential application to microthrusters.

e Studies were conducted to investigate the effect of parameters
such as power deposition, and the geometry of the reactor.

e The geometry affected the plasma characteristics significantly,
whereas there was no significant difference to incremental thrust.

e At higher power, higher gas temperatures lead to higher thrust.

e Rarefaction at high temperatures decreases mean free path and
could limit thrust produced.
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