FUNCTIONALIZATION OF ROUGH SURFACES AND POROUS MICRON-SIZED POLYMER BEADS USING ATMOSPHERIC PRESSURE PLASMAS*

Ananth N. Bhoj^{a)} and Mark J. Kushner^{b)}

^{a)}Department of Chemical and Biomolecular Engineering University of Illinois, Urbana, IL 61801 bhoj@uiuc.edu

^{b)}Department of Electrical and Computer Engineering Iowa State University, Ames, IA 50011 mjk@iastate.edu

http://uigelz.ece.iastate.edu

52nd AVS International Symposium, 30th October 2005 – 4th November 2005, Boston, MA.

*Work supported by the NSF and 3M.

OUTLINE

- Introduction to plasma surface functionalization
- Description of the model
- Plasma dynamics in He/NH₃/H₂O mixtures
- Functionalization of rough and porous surfaces
- Concluding remarks

FUNCTIONALIZATION OF SURFACES USING PLASMAS

• Functionalization of surfaces occurs by their chemical interaction with plasma species - ions, radicals and photons.

- N-containing groups created using an ammonia plasma include
 - Amine –C-NH₂
 - Imine –C=NH
 - Nitrile –C ≡N

SURFACE MODIFICATION OF POLYMERS

 Pulsed atmospheric discharges (coronas) are widely used in industry to treat commodity polymers like polypropylene (PP).

• Akishev, et al, Plasmas Polym., 7, 261 (2002).

TREATMENT OF NON-PLANAR SURFACES

- M. Strobel, 3M
- Roughness of surface to be treated may range from 100s nm to few µm.
- SEM of polyester fabric (Borcia, *et al*, Plasma Sources Sci. Technol, *12*, 235 (2003).
- Penetration of plasma species into surface features determines the extent and uniformity of functionalization.

FUNCTIONALIZATION FOR BIOCOMPATIBILITY

 Ammonia plasma treatment creates amine (C-NH₂) groups on polymer¹ and textile² surfaces for applications such as cell adhesion, protein immobilization and tissue engineering.

(¹From K. Schroeder *et al*, Plasmas and Polymers, 7, 103, 2002)

(²From the website of the Biomedical Textile Research Center, Heriot Watt University, UK, http://www.hw.ac.uk/sbc/BTRC/BTRC/_private/Ouractivities.htm)

SCHEMATIC OF THE 2-D MODELING PLATFORM

DBD TREATMENT OF PP SURFACE WITH MICROSTRUCTURE

- Corona treating a polymer on the grounded electrode acts as a DBD.
- Gas mixture: He/NH₃/H₂O
- Features to represent surface roughness are modeled as shown.
- Interested in the variation in treatment uniformity of over different spatial scales.
- Polymer: polypropylene (PP)

• PRF – 10 kHz

GAS PHASE CHEMISTRY - He/NH₃/H₂O MIXTURES

- Electron impact reactions initiate dissociation of larger molecules into fragments consisting of ions and radicals that react further.
- Radicals reacting with the surface include H, NH₂, NH, O and OH

SURFACE REACTION MECHANISM - I

• Gas phase H, O and OH abstract H atoms from the PP surface producing reactive surface alkyl radical sites.

SURFACE REACTION MECHANISM - II

• Abstraction of H or reaction between alkyl radicals may lead to intermediate alkene sites for addition and radicals are re-created.

 Intramolecular reactions around amino surface radicals could lead to amine or imine through chain scission.

Optical and Discharge Physics

PLASMA DYNAMICS – PLASMA POTENTIAL

0

• - 5 kV, 760 Torr, He/NH₃/H₂O=98.9/1.0/0.1

- 5000

Potential (V)

PLASMA DYNAMICS – ELECTRON DENSITY

• - 5 kV, 760 Torr, He/NH₃/H₂O=98.9/1.0/0.1

MAX=2x10¹³

PLASMA DYNAMICS – ELECTRON IMPACT SOURCES

• - 5 kV, 760 Torr, He/NH₃/H₂O=98.9/1.0/0.1

MIN

[S-e] cm⁻³s⁻¹ MAX 2-decade log scale

ANANTH_AVS05_12

PLASMA DYNAMICS – NH₂ DENSITY

- 5 kV, 760 Torr, He/NH₃/H₂O=98.9/1.0/0.1

ANANTH_AVS05_13

MAX=5x10¹³

PENETRATION INTO SURFACE FEATURES – [e], [IONS]

- 5 kV, 760 Torr, He/NH₃/H₂O=98.9/1.0/0.1

Iowa State University Optical and Discharge Physics

ANANTH_AVS05_14

RADICAL DENSITIES DURING THE PULSE

EFFECT OF VOLTAGE ON [NH₂] DURING THE PULSE

- 5 kV

- 10 kV

- 15 kV

 At higher voltages, increased dissociation of NH₃ results in higher [NH₂] near the surface during the pulse.

• 760 Torr, He/NH₃/H₂O=98.9/1.0/0.1, t = 4 ns

EFFECT OF NH₃ FRACTION ON [NH₂]

[NH₃]=30%

[NH₃]=10%

 With higher NH₃ content, [NH₂] during the pulse is higher.

1.8x10¹² - 1.9x10¹², t =90 μ s 2.25x10¹² - 2.35x10¹², t =90 μ s

- During the interpulse period [NH₂] at the surface decreases because consumption reactions and diffusion dominate.
- 5 kV, 760 Torr
 MIN
 MIN
 MIN
 MIN
 MAX
 MAX
 Optical and Discharge Physics

EFFECT OF VOLTAGE POLARITY

MAX

• [NH₂] during the pulse

 Positive discharge takes longer to close the gap and achieve similar radical densities near the surface.

SURFACE COVERAGE OF ALKYL RADICALS

- ALKYL (PP•) radicals are formed by the abstraction reactions OH + PP \rightarrow PP• + H₂O H + PP \rightarrow PP• + H₂
- - 5 kV, 760 Torr, 10 kHz, He/NH₃/H₂O=89.9/10.0/0.1

SURFACE COVERAGE OF AMINE [C-NH₂] GROUPS

 AMINE (C-NH₂) groups are created by addition of NH₂ to surface alkyl radicals

 $NH_2 + PP \bullet \rightarrow PP - NH_2$

• - 5 kV, 760 Torr, 10 kHz, He/NH₃/H₂O=89.9/10.0/0.1, t = 0.1 s

EFFECT OF NH₃ FRACTION ON TREATMENT

- Surface coverage of amine groups decreases as [NH₃] increases.
- As [NH₃] increases, less energy is expended into dissociating H₂O, decreasing OH fluxes.

- Since OH contributes significantly to initiating surface reactions by H abstraction, higher NH₃ leads to lower amine coverage.
- - 5 kV, 760 Torr, He/NH₃/H₂O=99-x/x/0.1, 10 kHz, 1 s

TREATMENT OF POROUS POLYMER BEADS

 Representation of Functionalized Porous Bead for Protein Binding sites, (from www.ciphergen.com)

- Macroporous beads are 10s μm in diameter with pore sizes < 10 μm.
- External bead surface and internal pore surfaces are functionalized for applications like polymer supported catalysts, protein immobilization.
- Penetration of reactive species into pores is critical to functionalization.

DBD TREATMENT OF POROUS POLYMER BEAD

- Corona treating a porous polymer bead placed on the lower dielectric.
- How well are the internal surfaces of porous polymer beads accessible to the plasma?
- What is the extent of functionalization on the internal surfaces?
- Non-interconnected pore architecture
- Bead size ~ 10s μm
 Pore dia ~ 2-10 μm
- - 5 kV, 760 Torr, He/NH₃/H₂O=89.9/10.0/0.1 • PRF - 10 kHz

PLASMA PENETRATION INTO INTERNAL SURFACES

t = 3 ns

- Electron penetration into pores depends on the view-angle.
- Electrons recede due to surface charging effects.
- Radical production inside pores is high in those regions where plasma has penetrated.

Iowa State University Optical and Discharge Physics

t = 2 ns

[NH₂] INSIDE PORES: EFFECT OF BEAD DIAMETER

• During the pulse, [NH₂] increases slightly with bead size within pores.

2x10¹⁰- 2x10¹³

7.5x10¹²- 8.5x10¹²

 $[NH_2] \text{ cm}^{-3}$

(log scale)

MAX

MIN

 In the interpulse period, [NH₂] is higher within smaller beads.

 - 5 kV, He/NH₃/H₂O=89.9/10.0/0.1, pore dia=4.5 μm, 760 Torr

[NH₂] INSIDE PORES : EFFECT OF PORE DIAMETER

 [NH₂] within pores increases with pore diameter during the pulse and in the interpulse period.

 - 5 kV, He/NH₃/H₂O=89.9/10.0/0.1, bead dia=90 μm, 760 Torr

FUNCTIONALIZATION OF POROUS BEAD SURFACES

EFFECT OF BEAD, PORE DIAMETER ON TREATMENT

- Outer bead surfaces have amine coverage significantly higher than interior pore surfaces in all cases.
- Interior pore surfaces of smaller beads have higher amine coverage due to higher average reactive radical fluxes.
- Similarly, interior pore surfaces of larger pore diameter bead have slightly higher amine coverage.
- 5 kV, 760 Torr, 10 kHz, He/NH₃/H₂O=89.9/10.0/0.1, t=1 s

CONCLUDING REMARKS

- Pulsed DBD-corona treatment of rough PP surfaces and porous μm-sized beads in He/NH₃/H₂O mixtures was studied using an integrated multiscale plasma dynamics – surface kinetics model.
- Charged species have limited penetration due to surface charging while radicals can diffuse into surface features.
- Amine coverage of rough surfaces is significantly lower in the nooks and crannies as average fluxes of reactive species is lower.
- With higher NH_3 fraction, amine surface coverage reduces as less energy is expended in dissociating H_2O to produce OH radicals.
- The outer surfaces of porous beads have significantly higher amine coverage than the inner surfaces along the pores.
- Larger bead size and smaller pore diameter results in lower surface functionalization along inner surfaces due to greater diffusion barriers encountered by reactive species.