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INTRODUCTION
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•  Obtaining good uniformity in high density plasmas is an important goal 

    in microelectronic processing, especially for large wafers and for cases 
    requiring high etching selectivity.

•  Edge effects in the reactor can cause non-uniformity in reactants.

•  Use of electrodes having co-axially grooved geometries can 

     produce high density plasmas. The plasma perturbation produced by 
     geometry can result in good discharge uniformity.

•  The goal of this study is to understand the mechanism for obtaining 

     improved uniformity from electrode design.
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EXPERIMENTAL PROOF OF PRINCIPLE
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•  The concept of using a grooved electrode to improve discharge uniformity 

     has been proposed by M. Sugawara and T. Asami.

•   Reactor schematic and experimental conditions.

• Parrallel-plate reactor
• Plate separation: 35 cm
• rf (13.56 MHz) power
• Ar gas
• Pressure: 130 mTorr

• Ref.: M. Sugawara, T. Asami, Surface & Coatings Technology, 73 (1995) 1-4
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GROOVED  ELECTRODE  GEOMETRY

GEC98-04

• Hollow-cathode like electrode

• Co-axial vertical grooves

• Groove width: 5 mm

• Original groove depth: 15 mm

• Ref.:  M. Sugawara, T. Asami, Surface & Coatings Technology, 73 (1995) 1-4
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EXPERIMENTAL  RESULTS
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• Ion saturation current distributions 
  were measured for electrode 
  geometries with and without groove 
  compensation.

• Before optimizing the grooves, ion 
  current peaks at the edge of the reactor.

• With proper design of the groove
  depth near the peak current region, the
  uniformity of the ion current distribution 
  improves.

• Ref.: M. Sugawara, T. Asami, Surface & Coatings Technology, 73 (1995) 1-4
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  • In this study the “HPEM” was used to investigate the mechanisms 

      whereby grooves influence uniformity. 

  • General description

        •  modular  program           
        •  low pressure condition ( 1 mTorr to 10 Torr ) 
        •  for plasma  etching and deposition 
        •  2-d azimuthally symmetric model     

  • Main modules in HPEM

        •  Electromagnetic Module (EMM), for calculating electromagnetic 
           fields and magneto static fields.     
        •  Electron Energy Transport Module (EETM), for solving electron 
           temperature and electron impact reaction coefficients.

 •  Fluid-chemical Kinetics Simulation (FKS), for computing the plasma
           species densities and electrostatic potential.



UNIVERSITY OF ILLINOIS
OPTICAL AND DISCHARGE PHYSICS

SCHEMATIC OF 2-D/3-D HYBRID PLASMA EQUIPMENT MODEL
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ELECTRON  DENSITY  DISTRIBUTION
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•  Before electrode geometry modification: 
    Electron density peaks near the edge of the reactor.
• After decreasing the depth of the grooves close to the peak density area:
    The electron density gets more uniform.

Radius  (cm) Radius  (cm)

•  Original  electrode •  Modified  electrode

•  Ar, 130 mTorr, 13.56 MHz, 100 v amplitude
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ELECTRON  DENSITY  DISTRIBUTION  (cont.)
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•  Radial electron density 

    distribution in the middle-plane 
    between two electrode plates.

• With proper modification of the

    electrode geometry, the electron 
    density distribution line is 
    flattened.

• Simulation results agree very 

    well with the experimental data. 

Radius  (cm)

Before electrode modification

After electrode modification
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ELECTRON  SOURCES
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•  Hollow-cathode effect of the grooved electrode can be one source of
     electrons.
•  Compared with normal source, the source due to secondary electron   
     emission from grooved electrode seems to  be much smaller and thus 
     less important. This is because  p d=0.065 torr-cm is below the 
     acceptable threshold for hollow cathode operation.
•  The hollow aperture to hollow wall area ratio is low. 

Radius  (cm) Radius  (cm)

•  Bulk electron source •  Beam electron source
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ELECTRON  TEMPERATURE  DISTRIBUTION
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•  Before electrode geometry modification, there is a peak Te  close to the

    peak electron density region.

• After reducing the depth of the grooves near this region, the peak Te area

    is depressed, and the peak shifts a bit to a smaller radius.

Radius  (cm) Radius  (cm)

a)  Original  electrode b)   modified  electrode
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MECHANISM of UNIFORMITY IMPROVEMENT
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•  For original reactor, corner effect causes local high Te area near the edge

    of the electrodes, which produce higher electron density at that region.

• The reduction of the groove depth close to the peak Te area actually 

    decreases the electron diffusion loss area to the wall.

• To keep local electron generation--loss balance, the Te near the area

    must drop down, so the peak Te area is depressed. 

      

∂(Ne)
∂t

= nek ionngasV − Dane

Λ2 A

       k ion =< σν >∝ Teα

• A more uniform Te distribution at last leads to the more uniform distribution

    of electron density.



 •  D =  D        , P = 260 mTorr 
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INFLUENCE of PRESSURE and GROOVE WIDTH
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•  The electron density has different distribution for electrode with different    

    groove width, or for different gas pressure condition.

• Increasing pressure or increasing groove width have similar effects on the

    electron density distribution.

Radius  (cm) Radius  (cm)

•  D = 4 D         ,P = 130 mTorr (original) (original)
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ELECTRODE MODIFICATION EFFECT
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•  Electron density distribution after electrode geometry modification.

Radius  (cm) Radius  (cm)

•  Proper electrode modification based on original electron density 

    distribution can improve the uniformity. 

 •  D =  D        , P = 260 mTorr (original)•  D = 4 D         ,P = 130 mTorr (original)



 •  D =  D        , P = 260 mTorr 
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ELECTRON  SOURCES
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Radius  (cm) Radius  (cm)

(original)

•   Bulk electron source •  Beam electron source  

•  Bulk electron source has two peak regions. 
•  Beam electron source occupies larger fraction of the total source. 
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CONCLUSION
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•  An rf parallel plate reactor with a grooved electrode has been used to 

    obtain uniform discharge processing.

•  By adjusting the groove depth geometry, we can optimize the uniformity

     of the discharge.

•  Simulation results demonstrate the change of electron density uniformity 

     with the variation of electrode geometry.

•  These results suggest that optimizing the local electrode groove depth can 

     improve the electron temperature distribution, thus leading to better
     plasma uniformity.


