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INTRODUCTION
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•  Fluorocarbon (CmFn) plasmas are widely used for SiO2/Si etching due to
  their high rate and good selectivity.

•  CFx radicals passivate the wafer surface and so influence etching
  behavior.

•  The passivation thickness depends on wafer materials, plasma-wall
  interactions, and processing parameters.

•  Our goals:

•  Develop a surface reaction mechanism

•  Model passivation dependent etching

•  Investigate influences of process parameters (e.g., bias, chemistry).



HYBRID PLASMA EQUIPMENT MODEL (HPEM)
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•  Modular simulator addressing low temperature, low pressure plasmas.

•  EMM calculates electromagnetic fields and magneto-static fields.

•  EETM computes electron impact source functions and transport coefficients.

•  FKM derives the densities, momentum and temperature of plasma species.

•  VPEM shell can be added to HPEM for process control.
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SURFACE KINETICS MODEL (SKM)
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•  The Surface Kinetics Model (SKM) is an integrated module of the HPEM.

•  The SKM

•  Uses reactant fluxes from the HPEM

•  Applies a user defined reaction mechanism

•  Updates surface sticking and product reflection coefficient for the HPEM

•  Calculates surface coverages and process rates

•  The SKM uses a multi-layer surface site balance model at every mesh point
  along the plasma-surface boundary.
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C2F6 PLASMA ETCHING OF SiO2
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•  The reaction mechanism for SiO2 etching is based on:

•  Growth of CxFy passivation layer (balance of deposition and consumption).

•  Formation of complex at the interface between oxide and passivation layer
  resulting from chemisorption of CFx.

•  Ion activated (through passivation layer) etching of complex.  Rate of
  activation scales inversely with passivation layer thickness.

•  Diffusion of etch precursor and etch product.
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SiO2 ETCH REACTION MECHANISM
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•  Simulations of C2F6 etching of SiO2 in an ICP reactor were performed.

•  Representative gas phase reactions:

e + C2F6      →      CF3
+ + CF3 + e + e

e + CF3      →      CF3
+ + e + e

e + C2F6      →      CF3 + CF3 + e

e + CF3      →      CF2 + F + e

e + CF3      →      CF2 + F + F-

e + CF4      →      CF2 + F + F + e

e + CF4      →      CF3 + F + e

F + F + M     →      F2 + M

CF3 + CF3 + M  →  C2F6 + M

CF2 + F2      →      CF3 + F

CF3 + F2      →      CF4 + F

CF2 + CF3    →       C2 F5

C2F5 + F     →       CF3 + CF3
•  C2F6, 10 mtorr, 200 sccm, 650 W ICP, 100 V bias
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RADICAL  DENSITIES
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•  Less uniform CF2 density distribution due to its higher loss rate at the
  reactor wall.

•  C2F6, 10 mtorr, 200 sccm, 650 W ICP, 100 V bias.
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RADIAL DISTRIBUTIONS
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•  C2F6, 10 mtorr, 200 sccm, 650 W ICP, 100 V bias.

•  Radial flux distribution of  CF2 is less uniform than that of F as a consequence of the
  of the density distributions.

•  Polymer distribution follows the CF2 flux distribution for this case.

•  Etch rate increases in the radial direction, inverse to the behavior of polymer distribution.
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SUBSTRATE  BIAS
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• At low biases, the passivation layer thickness decreases with increasing bias due
to increasing ion sputtering of the polymer, and the etch rate increases.

• At high biases, the passivation is starved and the etch rate goes to saturation.
More passivating neutral flux (CFx, x ≤ 2) is required to increase the etch rate.

: Γn/Γion = 35.

: Γn/Γion = 25.
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MONTE CARLO FEATURE PROFILE MODEL (MCFPM)
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• Profiles of SiO2 in C2F6/Ar plasma etching were investigated with the MCFPM.

• The MCFPM model predicts the time and spatially dependent microscale
processes which produce etch profiles.

• The Plasma Chemistry Monte Carlo Model
(PCMCS) uses HPEM results to produce
reactive fluxes (energy and angle) to the
surface.

• The MCFPM uses these fluxes to implement
a user defined reaction mechanism.
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TAPERING OF PROFILES
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• In high aspect ratio (AR) etching of SiO2 by fluorocarbon plasmas, the sidewall of
trenches are passivated by neutrals (CFx, x ≤ 2) due to the broad angular
distributions of neutral fluxes.

• Tapered trench profiles are produced when the passivation/ion flux ratio is large.

8

• Ar/C2F6 = 20/80.

• 1000 W ICP power,
150 V bias.

• 10 mTorr.

• Radial location: 3 cm.

Experiment Simulation
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PASSIVATION/ION FLUX RATIO
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• Increasing passivating neutral to ion flux ratio (Γn/Γion) leads to more tapered
profiles due to increasing sidewall passivation.

• When the passivating neutral flux is too small, insufficient sidewall protection
by the passivation layer leads to a bowed profile.
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INFLUENCE OF ION ENERGY
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• With increasing ion energy, the increasing ion sputtering yield of the sidewall
passivation layer produces a less tapered profile.

• The etch rate also increases with increasing ion energy due to decreasing (but
sufficient) passivation.

• Simulations and experiments obtained similar trends.

Experiments Simulations
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INFLUENCE OF ION ENERGY (cont.)
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• When the ion energy is very high, the SiO2 etching is limited by the passivation
instead of the  ion sputtering yield.

• The etch rate and the bottom width of the trench are saturated at high ion energies.

Wb:     Trench width 0.5 µm
           above the bottom.

Wt:      Trench width at the top.

Depth: Trench depth after
            equal etch times.
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SUMMARY
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• The polymeric passivation at the surface in fluorocarbon plasma etching of SiO2

strongly influences the process kinetics and feature profiles.

• With increasing substrate bias, the passivation thickness on the wafer
decreases due to increasing ion sputtering, resulting in increasing etch rates
and  less tapered profiles.

• At high ion energies, sufficient passivation is required for the wafer etching.

• Processes with high passivating neutral to ion flux ratios produce tapered
profiles.  Both the bottom critical dimension and the etch rate decrease with
increasing ratio of passivating neutral to ion fluxes.


