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INTRODUCTION: PlASMA-SURFACE INTERACTIONS
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•  In plasma etching, reactant fluxes interact with both the substrate and the    

    wall of the reactor. The reaction products from these surfaces return to 
    the plasma to modify the gas composition and thus plasma properties,
    and ultimately fluxes back to the surfaces. 

•  Since the walls of the reactor have a larger area than the wafer, the

    plasma-reactor wall interaction is very important for determining the 
    plasma composition.

•  Our goal is to develop a self-consistent accounting of surface chemistry 

    combined with a plasma model to address the omni-surface reactions, 
    to investigate surface reaction mechanisms.

•   This was accomplished by developing a Surface-Kinetics-Module for the 
    Hybrid Plasma Equipment Model.
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DESCRIPTION OF THE SURFACE-KINETICS-MODULE
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•  The Surface-Kinetics-Module (SKM) is an integrated module of the

    Hybrid Plasma Equipment Model (HPEM).

•  Using reactant fluxes to surfaces from the HPEM, the SKM updates the 

    surface sticking and product reflection coefficients used as surface 
    boundary conditions in the HPEM.
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•  This is accomplished by formulating a multi-layer surface site balance model
   at every mesh point along the plasma-surface boundary.
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ENERGY DEPENDENCE OF REACTIONS
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• All surface reactions in the SKM allow for ion energy dependence.

• Ions are accelerated to the surface through the sheath, arriving on the surface
  with energy of 
       E ion = Q f(r) V sh(r)

   where

       Q = Ion charge
       f(r) = Ratio of ion mean free path to sheath thickness (function of location)
       V sh(r) = Sheath voltage drop (function of location)

• Surface reactions have a general energy dependence given by

       K = k 0  (E ionn - Ethn) / (E refn - Ethn)

  where  
       k 0 = Etching yield on reaction probability for ion with energy E ref .

       E th = Threshold energy for process.

       n = Energy dependence (1/2 for all etching process in this work)
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REACTION MECHANISM FOR C2F6  ETCHING  OF Si
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•  C2F6 etching of Si in an ICP reactor has been investigated.

•  The reaction mechanism is based on the works of T.E.F.M. Standert et. al * .
•  Representative surface reactions (“_s” denotes surface species)
    W: Reactor wall, P: Passivation layer

CF2              --> P

CF3+ + P     --> CF4

F + P            --> F_t
F_t                --> F_i
F_i + Si_s     --> SiF_s
F_i + SiF_s   --> SiF2_s

F_i + SiF2_s --> SiF3_s

F_i + SiF3_s --> SiF4

CF2 + W       --> W

CFx

CFx

F

F

CF4

F

SiF4
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M+ (Activation)
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Film 
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* T.E.F.M. Standert, M.Scharkens, N.R. Rueger, P.G.M. Sebel, and G.S. Oehrlein,
   J.Vac. Sci. Technol. A 16(1), 239 (1998)
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ICP REACTOR: TYPICAL CONDITIONS
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•  Simulations were performed for an ICP reactor having a substrate bias.

Plasma Etching
Chamber

Wafer

Coils Showerhead Nozzle (C2F6)

~

rf Bias
Radius  (cm) 

•  C 2F6, 10 mTorr, 200 sccm, 650 W ICP, 100 V bias

•  Electron Density 
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RADICAL DENSITIES: BASE CASE
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•  CF2 and F radical density distributions.

•  High CF2 density will cause thick passivation layer deposited on the wafer.

•  F radical contributes to the etching of Si to form SiF 4 gas.

•  C2F6, 10 mTorr, 200 sccm, 650 W ICP, 100 V bias.

Radius  (cm) Radius  (cm)

• CF 2 Density • F Density
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WALL TEMPERATURE DEPENDENCE
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•  Experiments (M. Schaepkens et. al *) 
    have shown a variation of radical 
    densities as the wall temperature changes.

•  We simulated the consequences of wall
    temperature by modifying the sticking
    coefficient of CF 2 to the wall. 

•   With  increasing wall temperature, the 
    CF 2 loss rate is smaller due to the lower 
    sticking coefficient, which produces an 
    increase of CF 2 density in the bulk 
    plasma region.

•  The resulting gas chemistry favors 
    consumption of F atoms:  
         CF 2 + F 2 > CF3 + F     slow
         CF 2 + F   > CF 3            fast
    So increased CF 2 density will induce 
    decreased F density.
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• Simulation results
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* M. Schaepkens, R.C.M. Bosch, G.S. Oehlein,  
  J. Vac. Sci. Technol. A 16(4), 2099 (1998)

• Experimental results
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PASSIVATION  LAYER  AND  ETCH  RATE
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•  Conditions were chosen which purposely produce non-uniform fluxes to 
     demonstrate the influence of passivation layer thickness on etch rate.
•  Higher CF2 fluxes at the center of the substrate produce a thicker 
     passivation layer.
•  This in turn produces a minimum in etch rate.

Radius  (cm) Radius  (cm)

•  C2F6, 10 mTorr, 200 sccm, 650 W ICP, 100 V bias.
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•  The passivation layer thickness and etch rate at the center of the wafer 
     depend on the wall temperature due to the change in CF 2 and F densities.

•  As the wall temperature increases, the increase in CF 2 density produces
    an increase of the passivation layer thickness, and a decrease in etch rate.

PASSIVATION  LAYER  AND  ETCH  RATE  vs.WALL TEMPERATURE
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•  C2F6, 10 mTorr, 200 sccm, 650 W ICP, 100 V bias.
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•  As the bias voltage increases, the ion bombardment energy increases, 
   leading to a decrease in the passivation layer thickness. The etch rate 
   therefore increases due to a higher F atom diffusion flux through the 
   passivation layer.

PASSIVATION  LAYER  AND  ETCH  RATE  vs. BIAS
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•  C2F6, 6 mTorr, 200 sccm, 1000 W ICP.
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Cl2  ETCHING  OF  p-Si
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•  The SKM was applied to the analysis of Cl 2 etching of p-Si. 

•  Representative surface reactions (“_s” denotes surface species)
  
  Cl + Si_s  --> SiCl_s
  Cl  + SiCl_s  --> SiCl 2_s

  Cl + SiCl 2_s      --> SiCl 3_s 

  Cl* + SiCl_s  --> SiCl 2 + Si_s

  Cl* + SiCl 3_s  --> SiCl 4 + Si_s

  Cl+ + SiCl_s  --> SiCl 2 + Si_s

  Cl+ + SiCl2_s    --> SiCl 2 + Cl + Si_s

  Cl+ + SiCl3_s  --> SiCl 4 + Si_s

  Cl2+ + SiCl2_s  --> SiCl 4 + Si_s

  Ar+ + SiCl2_s  --> SiCl 2 + Ar + Si_s

  Cl    + W_s         --> WCl_s

  Cl+  + WCl_s     --> W_s  + Cl 2
Radius (cm)

• Cl+ Density

• Ar/Cl 2 = 70/30, 10 mTorr, 100 sccm, 800 W ICP
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RADICAL  AND  ION  FLUXES
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•  Since Cl2 is almost totally dissociated for the conditions of interests, the 
    Cl atom flux to the substrate is nearly constant with power.

•  The ion flux increases nearly linearly with power.
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• Ar/Cl 2 = 70/30, 10 mTorr, 100 sccm
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p-Si  ETCH  RATE
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•  Predictions for etch rate correlate well
   with the semi-emperical model of 

   D. Dane and T. D. Mantei *:

      
R = 1

aΓCl

+ 1
b[JiVs − (JV) th ]

 

 
 
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•  Region I:  Etching is in the ion-

   starved region, so the increased ion
   flux at higher power produces an 
   increase of etch rate.

•  Region  II:  Etching is in the Cl 

   radical-starved region, so further 
   increase of the ion flux does not 
   increase the etch rate.
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• Ar/Cl 2 = 70/30, 10 mTorr, 100 sccm
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* D. Dane and T. D. Mantei, Appl. Phys. Lett.
   65 (4), 478 (1994)
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CONCLUSIONS
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•  A Surface Kinetics Module (SKM) has been developed and integrated
   into the Hybrid Plasma Equipment Model (HPEM).

•  The SKM applies a surface reaction mechanism and uses fluxes from the 
   HPEM to update sticking coefficients and surface species coverage. It
   also yields etching/deposition rate.

•  The SKM was used to study the C 2F6 etching of Si and Cl 2 etching of p-Si. 

•  Results indicate that for C 2F6 etching of Si, the decrease of CF 2 sticking to 

   the wall with increasing temperature increases the CF 2 density in the plasma.

   As a result the passivation layer thickness increases, and the etch rate drops.

•  Higher bias voltages on the substrate decrease the passivation layer
   thickness and so allow the etch rate to increase through higher F atom
   diffusion flux.

•  For Cl 2 etching of p-Si, the simulation demonstrates the ion-starved and

   the Cl radical-starved regions for processing.


