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• Fluorocarbon (CmFn) plasmas are widely used for Si/SiO2 etching due to
  their favorable kinetic properties and high selectivity.

• CFx radicals passivate the wafer surface and so influence etching

  behavior.

• The passivation thickness depends on wafer materials, plasma-wall
  interactions, and processing parameters.

• Our goal:

       - Develop a surface reaction model

       - Couple the surface model with the bulk plasma simulator - HPEM
       - Quantitatively investigate the surface reaction mechanisms
       - Optimize the processes
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• Modular simulator addressing low temperature, low pressure plasmas.
• EMM calculates electromagnetic fields and magneto-static fields.
• EETM computes electron impact source functions and transport coefficients.

• FKM derives the densities, momentum and temperature of plasma species.
• VPEM shell can be added to HPEM for process control.
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• The Surface Kinetics Model (SKM) is an integrated module of the HPEM.

• The SKM
       - uses reactant fluxes from the HPEM
       - applies a user defined reaction mechanism
       - updates surface sticking and product reflection coefficient for the HPEM
       - calculates surface coverages and etch rates
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• The SKM is a multi-layer surface site balance model at every mesh point
  along the plasma-surface boundary.
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• All surface reactions involving ion reactants  in the SKM allow for ion
  energy dependence.

• Ions are accelerated to the surface through the sheath, arriving on the
  surface with energy of
          Eion = Q f(r) Vsh(r)
  where
          Q:       Ion charge.
            f(r):     Ratio of ion mean free path to sheath thickness.
      Vsh(r): Sheath voltage drop.

• Surface reactions have a general energy dependence given by
          K = K0 (Eion

n - Eth
n) / (Eref

n - Eth
n)

  where
          Eion: Incident ion energy.
          K0:   Etching yield or reaction probability for ion with energy Eref.
          Eth:  Threshold energy for the process.
          n:     Energy dependence (1/2 for this work).
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• During  Si/SiO2 etching by fluorocarbon plasmas, a CmFn polymer layer will
  simultaneously deposit on the surface of the wafer and the reactor wall.

• The SKM allows the growth of the passivation layer by CFx radical
  polymerization on the surface. F atoms etching and energetic ion sputtering
  can consume the layer.

• The steady state passivation thickness is reached when the film generation
  and consumption rates are balanced.

• SKM uses passivation thickness dependent rates for mass and energy
  transfers through the layer.
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• Simulations of C2F6 etching of Si in an ICP reactor were performed.

• Representative gas phase reactions:
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• The reaction mechanism was based on the work of  G. S. Oehrlein et al *.

• A CxFy polymer layer is formed on the Si surface in coincidence with Si
  etching. The steady state passivation layer thickness is a balance of CFx

  deposition, ion sputtering and F etching of the layer.

• Si etching precursor (F) needs to diffuse through the passivation layer.
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* T.E.F.M. Standert, M.Scharkens, N.R.Rueger, P.G.M. Sebel, and G.S. Oehrlein,
   J. Vac. Sci. Technol. A 16(1), 239 (1998)
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• Radical densities peak on the axis.

• The less uniform CF2 density distribution is due to its higher loss rate at
  the reactor wall.
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• C2F6, 10 mtorr, 200 sccm, 650 W ICP, 100 V bias.
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• Radial flux distribution of  CF2 is less uniform than that for F as a
  consequence of the low sticking coefficient for F.

• Polymer thickness follows the CF2 flux for this case.

• Etch rate increases in the radial direction, inversely to the polymer
  thickness due to F atom diffusion.
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INFLUENCE OF WALL TEMPERATURE
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• Experiments showed a variation of radical densities vs. Twall.* We simulated the
  consequence of varying Twall by modifying the sticking coefficient of CF2 to the wall.

• With increasing Twall, the CF2 loss rate is smaller due to the lower sticking
  coefficient, which produces an increase of CF2 density in the bulk plasma.

• The resulting gas chemistry favors consumption of F atoms. So F density drops.

* M.Scharkens, R.C.M. Bosch, and G.S. Oehrlein, 
   J. Vac. Sci. Technol. A 16(1), 239 (1998) 
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PASSIVATION LAYER AND ETCH RATE
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• As wall temperature increases, the increased CF2 density produces
  larger fluxes to the wafer. This leads to a thicker passivation layer.

• The diffusion flux of the Si etching precursor (F) through the passivation
  layer decreases with increasing passivation, so the etch rate drops.
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REACTION MECHANISM FOR C2F6 ETCHING OF SiO2
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• The reaction mechanism for SiO2 etching is based on:

• Growth of CxFy Passivation layer (balance of deposition and consumption).
• Formation of complex at the interface between oxide and passivation layer
  resulting from chemisorption of CFx.

• Ion activated (through passivation layer) etching of complex. Rate of
  activation scales inversely with passivation layer thickness.

• Diffusion of etch precursor and etch product.
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SURFACE COVERAGE
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• The wafer surface sites are occupied by several surface species.

• The surface coverages at steady state depend on the relative rates of

 - complex formation - Ion activation
- F atom etching - Sputtering
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SUBSTRATE  BIAS
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•  With increasing substrate bias, the passivation layer thickness decreases
and the etch rate increases.

•  Simulations and experiments obtained similar trends.

*N.R. Rueger, G.S. Oehrlein et al, J. Vac. 
 Sci. Technol. A 15, 1881 (1997)
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SUBSTRATE  BIAS
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• With increasing bias, the variation in surface coverage is not big
  when the processes are not limited by the F atom diffusion.

• The normalized reactive ion etch efficiency increases with increasing

  substrate bias due to the increase in sheath voltage and decrease in
  passivation thickness.
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SUMMARY
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• The Surface Kinetics Model (SKM) has been coupled with the HPEM
  to simulate surface interactions and their influences on the bulk plasma.

• In Si etching, higher loss of CF2 on reactor walls leads to lower CF2 density

  in the gas phase. This produces thinner passivation layers and higher
  etch rates.

• Consumption of CxFy at the polymer-SiO2 interface during the SiO2 etching

  leads to thinner passivation compared with Si etching.

• In SiO2 etching, with increasing substrate bias, the surface coverages

  change little when the process is not limited by F diffusion.

• Increasing bias leads to higher sheath voltage and thinner passivation, so

  higher RIE efficiency. The etch rate increases accordingly.


