46th AVS International Symposium Oct. 25 - 29, 1999 Seattle, WA

INVESTIGATION of Si and SiO₂ ETCH MECHANISMS USING an INTEGRATED SURFACE KINETICS MODEL

Da Zhang* and Mark J. Kushner** *Department of Materials Science and Engineering **Department of Electrical and Computer Engineering University of Illinois Urbana, IL 61801

> email: dazhang@uiuc.edu mjk@uiuc.edu

⁺Work supported by SRC and LAM Research Corporation.

AGENDA

- Introduction
- Description of the Model
 - Hybrid Plasma Equipment Model (HPEM)
 - Surface Kinetics Module (SKM)
- C_2F_6 etching of Si
 - Reactor wall temperature
- C₂F₆ etching of SiO₂
 - Substrate bias
- Summary

- Fluorocarbon (C_mF_n) plasmas are widely used for Si/SiO₂ etching due to their favorable kinetic properties and high selectivity.
- CF_x radicals passivate the wafer surface and so influence etching behavior.
- The passivation thickness depends on wafer materials, plasma-wall interactions, and processing parameters.
- Our goal:
 - Develop a surface reaction model
 - Couple the surface model with the bulk plasma simulator HPEM
 - Quantitatively investigate the surface reaction mechanisms
 - Optimize the processes

HYBRID PLASMA EQUIPMENT MODEL (HPEM)

- Modular simulator addressing low temperature, low pressure plasmas.
- EMM calculates electromagnetic fields and magneto-static fields.
- EETM computes electron impact source functions and transport coefficients.
- FKM derives the densities, momentum and temperature of plasma species.
- VPEM shell can be added to HPEM for process control.

- The Surface Kinetics Model (SKM) is an integrated module of the HPEM.
- The SKM
 - uses reactant fluxes from the HPEM
 - applies a user defined reaction mechanism
 - updates surface sticking and product reflection coefficient for the HPEM
 - calculates surface coverages and etch rates

• The SKM is a multi-layer surface site balance model at every mesh point along the plasma-surface boundary.

$C_{m}F_{n}$ PLASMA: SURFACE REACTIONS

ENERGY DEPENDENCE OF REACTION PROBABILITY

- All surface reactions involving ion reactants in the SKM allow for ion energy dependence.
- lons are accelerated to the surface through the sheath, arriving on the surface with energy of

$$E_{ion} = Q f(r) V_{sh}(r)$$

where

- Q: Ion charge.
- f(r): Ratio of ion mean free path to sheath thickness.
- $V_{sh}(r)$: Sheath voltage drop.
- Surface reactions have a general energy dependence given by

$$\mathsf{K} = \mathsf{K}_0 \left(\mathsf{E}_{\text{ion}}^n - \mathsf{E}_{\text{th}}^n \right) / \left(\mathsf{E}_{\text{ref}}^n - \mathsf{E}_{\text{th}}^n \right)$$

where

E_{ion}: Incident ion energy.

- K_0 : Etching yield or reaction probability for ion with energy E_{ref} .
- E_{th} : Threshold energy for the process.
- n: Energy dependence (1/2 for this work).

- During Si/SiO₂ etching by fluorocarbon plasmas, a $C_m F_n$ polymer layer will simultaneously deposit on the surface of the wafer and the reactor wall.
- The SKM allows the growth of the passivation layer by CF_x radical polymerization on the surface. F atoms etching and energetic ion sputtering can consume the layer.
- The steady state passivation thickness is reached when the film generation and consumption rates are balanced.
- SKM uses passivation thickness dependent rates for mass and energy transfers through the layer.

- Simulations of C_2F_6 etching of Si in an ICP reactor were performed.
- Representative gas phase reactions:

REACTION MECHANISM FOR C_2F_6 ETCHING OF Si

- The reaction mechanism was based on the work of G. S. Oehrlein et al *.
- A C_xF_y polymer layer is formed on the Si surface in coincidence with Si etching. The steady state passivation layer thickness is a balance of CF_x deposition, ion sputtering and F etching of the layer.
- Si etching precursor (F) needs to diffuse through the passivation layer.

* T.E.F.M. Standert, M.Scharkens, N.R.Rueger, P.G.M. Sebel, and G.S. Oehrlein, J. Vac. Sci. Technol. A 16(1), 239 (1998)

- Radical densities peak on the axis.
- The less uniform CF₂ density distribution is due to its higher loss rate at the reactor wall.

• C₂F₆, 10 mtorr, 200 sccm, 650 W ICP, 100 V bias.

RADIAL DISTRIBUTIONS: FLUXES & ETCH RATE

- Radial flux distribution of CF_2 is less uniform than that for F as a consequence of the low sticking coefficient for F.
- Polymer thickness follows the CF₂ flux for this case.
- Etch rate increases in the radial direction, inversely to the polymer thickness due to F atom diffusion.

INFLUENCE OF WALL TEMPERATURE

- Experiments showed a variation of radical densities vs. T_{wall}.* We simulated the consequence of varying T_{wall} by modifying the sticking coefficient of CF₂ to the wall.
- With increasing T_{wall} , the CF_2 loss rate is smaller due to the lower sticking coefficient, which produces an increase of CF_2 density in the bulk plasma.
- The resulting gas chemistry favors consumption of F atoms. So F density drops.

* M.Scharkens, R.C.M. Bosch, and G.S. Oehrlein, J. Vac. Sci. Technol. A 16(1), 239 (1998)

PASSIVATION LAYER AND ETCH RATE

- As wall temperature increases, the increased CF₂ density produces larger fluxes to the wafer. This leads to a thicker passivation layer.
- The diffusion flux of the Si etching precursor (F) through the passivation layer decreases with increasing passivation, so the etch rate drops.

REACTION MECHANISM FOR C₂F₆ ETCHING OF SiO₂

- The reaction mechanism for SiO₂ etching is based on:
 - Growth of $C_x F_v$ Passivation layer (balance of deposition and consumption).
 - \bullet Formation of complex at the interface between oxide and passivation layer resulting from chemisorption of $\rm CF_x.$
 - Ion activated (through passivation layer) etching of complex. Rate of activation scales inversely with passivation layer thickness.
 - Diffusion of etch precursor and etch product.

- The wafer surface sites are occupied by several surface species.
- The surface coverages at steady state depend on the relative rates of
 - complex formation Ion activation
 - F atom etching

- Sputtering

- C₂F₆, 10 mtorr
- 100 sccm
- 650 W ICP
- 100 V bias

- With increasing substrate bias, the passivation layer thickness decreases and the etch rate increases.
- Simulations and experiments obtained similar trends.

*N.R. Rueger, G.S. Oehrlein et al, J. Vac. Sci. Technol. A 15, 1881 (1997)

- With increasing bias, the variation in surface coverage is not big when the processes are not limited by the F atom diffusion.
- The normalized reactive ion etch efficiency increases with increasing substrate bias due to the increase in sheath voltage and decrease in passivation thickness.

- The Surface Kinetics Model (SKM) has been coupled with the HPEM to simulate surface interactions and their influences on the bulk plasma.
- In Si etching, higher loss of CF₂ on reactor walls leads to lower CF₂ density in the gas phase. This produces thinner passivation layers and higher etch rates.
- Consumption of C_xF_y at the polymer-SiO₂ interface during the SiO₂ etching leads to thinner passivation compared with Si etching.
- In SiO₂ etching, with increasing substrate bias, the surface coverages change little when the process is not limited by F diffusion.
- Increasing bias leads to higher sheath voltage and thinner passivation, so higher RIE efficiency. The etch rate increases accordingly.