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OXYGEN-IODINE LASERS

e O,('A) dissociates I, and pumps | which lases on the 2P,, - 2P;,
electronic transition.

O,('A) + 1(?P3, ) & O,(°Z) + 1(3Py);)
I(*Py;2) > 1(*P3, ) +hv  (1.315um)
e Conventional COILs obtain O,('A) from a liquid phase reaction.

e Electrical COILs obtain O,('A) by exciting O, in discharge.

s (— )

U
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ELECTRIC DISCHARGE COILS

o Advantages of Electrical O,('A) Generation
e Low system mass — all gas phase reactions, no
liquid storage
o Safe chemistry — no hazardous chemical generators
e Simple design — no liquid recycling/disposal
systems

.... and Disadvantages
e Yield is low — reported yields are 10 — 30%, and laser

gain has not been demonstrated.
e Discharge heating — laser gain kinetics favor low
temperatures, but discharge heats gas.

[0,("'A)]

Yield =
[0,]1+]O, ('A)]+0.5[0] + 1.5[0,]

e Modeling and experiments are investigating methods for

high O,('A) yield and laser gain. University of lllinois
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GLOBAL PLASMA MODEL
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e GlobalKin is a spatially
homogeneous and time-
dependent discharge
model, adapted to
simulate time-
independent plug flow in
1-D.

Electric field is obtained
from circuit model or
electro-magnetics-power
balance.

Boltzmann solver
periodically updates e-
impact rate coefficients

Boltzmann
solver

N(x + Ax),
T, T
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REACTION MECHANISM

02"' 'g7: 82;I-DO) +0(1D)
1
O('D)+O é}’ - O('D)+O0
O+0 i‘s'?/ - 0+0
O,('Z)}—° 5 - 0+0
Ny f e
NS . > O
5 om\ ¢ -0,
” ] - M2
IS He 02(1 A) O quenching » 0,+0
> 0,+0,
/ - O,(v) o0
/ 0+0 > Ot
/ 0,+0,('%)
0 o(D) O,+0
i O,('Z)+O('D)
0,+0,+0
di?tchalrge — Oz+H (2_)
afterglow —— A
diluent — ’ 03 +He
- O"+0O+He

University of lllinois
GEC 2003-06 Optical and Discharge Physics



BASE CASE:

ElectriCOIL EXPERIMENT
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Conditions

He:0O, = 4:1
Velocity: 4 m/s
Pressure: 6 Torr
Power: 0.7 W/cc
~30 cm discharge
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COMPARISON TO EXPERIMENTS

e Comparison of GlobalKin predictions to the ElectriCOIL
experiment at UIUC: He:O, flow ratio = 4:1
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e Ref: D. Carroll and W. Solomon,
CU-Aerospace, 2003
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PROPOSED SCALING LAW

e A parameterization of velocity, pressure, power, and mixture was
completed to determine scaling laws for O,('A) yield.

e A scaling law is proposed giving yield (/) as a function of specific
energy depostion (in eV per inlet O, molecule):

— [OZ(IA)] — ,8 — f eV
[0,]+[0,('A)]+0.5[0] +1.5[0,] O, e

P

Parameter ranges
e Velocity: 500 - 5000 cm/s
e Pressure: 1-20 Torr These ranges give
e Power: 0.1 -1.5Wicc specific energies
e Mixture: 3-100% O, in He of 0 — 250 eV
elLength: 20 cm
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O,('A) YIELD VS. SPECIFIC ENERGY DEPOSITION

e Parameterization results

: 0.40
show that O,('A) yield :
obeys the scaling law to 0.35 |
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e Scatter at high yield is caused by eV /molecule O,
secondary effects (mixture, pressure,
power). University of lllinois
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O YIELD VS. SPECIFIC ENERGY DEPOSITION

e Atomic O yield increases
monotonically with
specific energy input
until near complete
dissociation is achieved.

e 50% dissociation occurs
by 5 - 8 eV, when O,('A)
yield begins to decrease.
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SECONDARY EFFECTS: DILUENT

e Addition of He
increases yield at fixed
specific energy -

1 .
O,('A) Yield

4.2 Torr O, partial pressure

deposition by reducing 14
E/N. > 12
: o
e Scaling laws apply to S 10
mixtures with diluents: ‘9:-’*
o 8
v 2
e
B=T g °F
Oz,inlet § 4
()
LI
2 —1
Conditions:
oV, .. = 2500 cm/s . i 1
e Power = 21 Wicc | O, mole fraction
*Py,= 4.2 Torr
o L., determined by energy dep. University of lllinois
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SECONDARY EFFECTS: PRESSURE

¢ Increasing total
pressure increases
potential yield, esp.
below 40 Torr.

e Scaling law applies at
constant pressure:

Conditions:
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1 :
O,('A) Yield
90% He, 10% O,

OZ,inlet

Energy deposition (eV/O, )

* Vet =900 cm/s
e Power =1 W/cc/Torr O,
e Py, = 10% of total Total Pressure (Torr)

o L,.., determined by energy dep.
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SECONDARY EFFECTS: POWER DEPOSITION

e Low power produces
the highest yields, by
allowing operation at a
more favorable E/N.

e However, low power
requires longer
residence times, which
may not be practical.

Conditions:
oV, et = 2500 cm/s
e Py, =3 Torr

o L., determined by
energy deposition.
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CONCLUSIONS

e A global plasma chemistry model was adapted to simulate
steady-state plug flow discharges.

e O,('A) yield in rf discharges is primarily a function of specific
energy deposition into oxygen species.

e He diluent increases the yield by reducing the operating E/N
of the discharge.

e Increasing the pressure raises the yield, although more
energy is required.

e The highest yields are likely achieved at low power
deposition, ~ 0.3 W/cc/Torr O,,.
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