SIMULATION OF $O_2(^{1}\Delta)$ YIELDS IN MIXTURES OF O_2 AND INERT GASES IN LOW PRESSURE PLASMAS^{*}

D. Shane Stafford^a and Mark J. Kushner^b University of Illinois ^aDepartment of Chemical and Biomolecular Engineering ^bDepartment of Electrical and Computer Engineering Urbana, IL 61801

> Email: dstaffor@uiuc.edu mjk@uiuc.edu

http://uigelz.ece.uiuc.edu

October 2003

*Work supported by NSF (CTS 99-74962, CTS03-15353) and AFOSR/AFRL

AGENDA

- Introduction
 - Conventional COILs
 - Electric discharge COILs
- Description of model
 - GlobalKin
 - Reaction mechanism
- Results
 - Yield scaling with energy deposition
 - Effect of He diluent
 - Effect of pressure
 - Effect of power
- Conclusion

OXYGEN-IODINE LASERS

• $O_2(^{1}\Delta)$ dissociates I_2 and pumps I which lases on the ${}^{2}P_{1/2} \rightarrow {}^{2}P_{3/2}$ electronic transition.

O₂(¹Δ) + I(²P_{3/2}) ↔ O₂(³Σ) + I(²P_{1/2}) I(²P_{1/2}) → I(²P_{3/2}) + h_V (1.315µm)

- Conventional COILs obtain $O_2(^1\Delta)$ from a liquid phase reaction.
- Electrical COILs obtain $O_2(^1\Delta)$ by exciting O_2 in discharge.

ELECTRIC DISCHARGE COILS

- Advantages of Electrical $O_2(^{1}\Delta)$ Generation
 - Low system mass all gas phase reactions, no liquid storage
 - Safe chemistry no hazardous chemical generators
 - Simple design no liquid recycling/disposal systems
 - and Disadvantages
 - Yield is low reported yields are 10 30%, and laser gain has not been demonstrated.
 - Discharge heating laser gain kinetics favor low temperatures, but discharge heats gas.

Yield =
$$\frac{[O_2(^1\Delta)]}{[O_2] + [O_2(^1\Delta)] + 0.5[O] + 1.5[O_3]}$$

 Modeling and experiments are investigating methods for high O₂(¹∆) yield and laser gain.
University of Illinoi

GLOBAL PLASMA MODEL

- GlobalKin is a spatially homogeneous and timedependent discharge model, adapted to simulate timeindependent plug flow in 1-D.
- Electric field is obtained from circuit model or electro-magnetics-power balance.
- Boltzmann solver periodically updates eimpact rate coefficients

REACTION MECHANISM

BASE CASE: ElectriCOIL EXPERIMENT

Conditions

- $He:O_2 = 4:1$
- Velocity: 4 m/s
- Pressure: 6 Torr
- Power: 0.7 W/cc
- ~30 cm discharge

COMPARISON TO EXPERIMENTS

 Comparison of GlobalKin predictions to the ElectriCOIL experiment at UIUC: He:O₂ flow ratio = 4:1

• Ref: D. Carroll and W. Solomon, CU-Aerospace, 2003

PROPOSED SCALING LAW

- A parameterization of velocity, pressure, power, and mixture was completed to determine scaling laws for $O_2(^1\Delta)$ yield.
- A scaling law is proposed giving yield (β) as a function of specific energy depositon (in eV per inlet O₂ molecule):

$$\beta = \frac{[O_2(^1\Delta)]}{[O_2] + [O_2(^1\Delta)] + 0.5[O] + 1.5[O_3]} \quad \Rightarrow \quad \beta = f\left(\frac{eV}{O_{2,\text{inlet}}}\right)$$

Parameter ranges

- Velocity: 500 5000 cm/s
- Pressure: 1 20 Torr
- Power: 0.1 1.5 W/cc
- Mixture: $3 100\% O_2$ in He
- Length: 20 cm

These ranges give specific energies of 0 – 250 eV

$O_2(^{1}\Delta)$ YIELD VS. SPECIFIC ENERGY DEPOSITION

 Parameterization results show that O₂(¹∆) yield obeys the scaling law to 1st order:

$$\beta = f\left(\frac{\text{eV}}{\text{O}_{2,\text{inlet}}}\right)$$

- O₂(¹∆) yield decreases after 5 – 8 eV as dissociation into O atoms dominates chemistry.
- 0.40 0.35 0.30 0.25 $D_2(^1\Delta)$ Yield 0.20 0.15 0.10 0.05 0.00 5 10 15 20 0
- Scatter at high yield is caused by secondary effects (mixture, pressure, power).

University of Illinois Optical and Discharge Physics

eV / molecule $O_{2.inlet}$

O YIELD VS. SPECIFIC ENERGY DEPOSITION

 Atomic O yield increases monotonically with specific energy input until near complete dissociation is achieved.

 50% dissociation occurs by 5 – 8 eV, when $O_2(^1\Delta)$ yield begins to decrease.

SECONDARY EFFECTS: DILUENT

- Addition of He increases yield at fixed specific energy deposition by reducing E/N.
- Scaling laws apply to mixtures with diluents:

$$\boldsymbol{\beta} = f\left(\frac{\mathbf{eV}}{\mathbf{O}_{2,\text{inlet}}}\right)$$

Conditions:

- V_{inlet} = 2500 cm/s
- Power = 21 W/cc
- P₀₂ = 4.2 Torr
- L_{disch} determined by energy dep.

SECONDARY EFFECTS: PRESSURE

- Increasing total pressure increases potential yield, esp. below 40 Torr.
- Scaling law applies at constant pressure:

$$\beta = f\left(\frac{\text{eV}}{\text{O}_{2,\text{inlet}}}\right)$$

Conditions:

- V_{inlet} = 500 cm/s
- Power = 1 W/cc/Torr O_2
- P₀₂ = 10% of total
- L_{disch} determined by energy dep.

SECONDARY EFFECTS: POWER DEPOSITION

- Low power produces the highest yields, by allowing operation at a more favorable E/N.
- However, low power requires longer residence times, which may not be practical.

Conditions:

- V_{inlet} = 2500 cm/s
- P₀₂ = 3 Torr
- L_{disch} determined by energy deposition.

CONCLUSIONS

- A global plasma chemistry model was adapted to simulate steady-state plug flow discharges.
- O₂(¹∆) yield in rf discharges is primarily a function of specific energy deposition into oxygen species.
- He diluent increases the yield by reducing the operating E/N of the discharge.
- Increasing the pressure raises the yield, although more energy is required.
- The highest yields are likely achieved at low power deposition, ~ 0.3 W/cc/Torr O₂.

University of Illinois Optical and Discharge Physics

ACKNOWLEDGEMENTS

- UIUC/CU-Aerospace Chemical Laser Group
 - D. Carroll
 - W. Solomon
 - J. Verdeyen
 - J. Zimmerman