RADIATION TRAPPING IN ELECTRODELESS LAMPS: COMPLEX GEOMETRIES AND OPERATING CONDITIONS*

Kapil Rajaraman** and Mark J. Kushner***

****Department of Physics**

***Department of Electrical and Computer Engineering

University of Illinois Urbana, IL 61801

http://uigelz.ece.uiuc.edu

*Work Supported by EPRI, NSF and Osram Sylvania

AGENDA

- Radiation transport
- Base case parameters
- Consequences of operating conditions
 - Effect of cold spot
 - Effect of ICP frequency
 - Effect of ICP power
 - Effect of low powers
- Consequences of change in plasma cavity shape.
- Conclusions

RADIATION TRANSPORT

- Electrodeless gas discharges are attractive as light sources due to their extended lifetime.
- Resonance radiation from the Hg (6³P₁) (254 nm) and Hg (6¹P₁) (185 nm) excites phosphors which generate visible light.
- This radiation may be absorbed and re-emitted many times prior to striking the phosphor (radiation trapping).

• We have modeled the radiation transport using a Monte Carlo module which is interfaced with a hybrid plasma equipment model to realistically simulate the gas discharge.

University of Illinois Optical and Discharge Physics

HYBRID PLASMA EQUIPMENT MODEL (HPEM)

- A modular simulator for low pressure plasmas.
- EMM: electromagnetic fields and magneto-static fields
- EETM: electron temperature, electron impact sources, and transport coefficients
- FKM: densities, momenta, and temperatures of charged and neutral plasma species; and electrostatic potentials

MONTE CARLO RADIATION TRANSPORT MODULE

- Monte Carlo photon pseudo-particles are launched from locations proportional to Hg* density.
- Trajectories are tracked accounting for absorption/emission based on Voight profile.
- Null cross section techniques account for variations in absorber and perturber densities, collision frequency and gas temperature.
- Partial frequency redistribution of emitted photons.
- Isotope shifts and fine structure splitting.
- Effective lifetimes (residence times) of photons in plasma and exit spectra are calculated.

BASE CASE – PHILIPS QL-LIKE

- Ar fill pressure 500 mTorr
- Hg pressure
 5 mTorr
- Power
 50 W
- Frequency 5 MHz

BASE CASE PLASMA PARAMETERS

• Cataphoresis creates a maximum [Hg] near the walls.

INCREASE IN COLD SPOT

 With an increase in cold spot, the absolute absorber density goes up much more rapidly than the radiator density, increasing trapping factors.

INCREASE IN COLD SPOT

Vacuum radiative lifetimes are 1.33 ns (185 nm), and 125 ns (254 nm), leading to orders of magnitude difference in trapping factors for the two lines.

EFFECT OF COIL FREQUENCY

- Coil frequency is an important design parameter for power transfer in ICPs.
- Collisional plasma (100s mTorr) implies electron neutral momentum transfer frequency $v_m \gg \omega$, the applied frequency.

•
$$\delta_c = \left(\frac{2}{\omega\mu_0\sigma_{dc}}\right)^{1/2}$$
 $\sigma_{dc} = \frac{e^2 n_e}{mv_m}$

- For a max electron density of 10^{12} cm⁻³, and a minimum collision frequency of 10^7 s⁻¹, $\delta \approx 30$ cm
- As δ is larger than size of the vessel, changes in rf frequencies are unlikely to affect the radiation transport.

EFFECT OF COIL FREQUENCY (contd.)

 As a result, coil frequency is seen not to affect the trapping factors.

University of Illinois Optical and Discharge Physics

GEC03_KAPIL_10

EFFECT OF POWER

• In sealed systems, increase in power raises ionization and temperature but not total gas density, leading to redistribution of absorbers.

EFFECT OF APPLIED POWER

• Trapping factors are seen to rise linearly with power.

• (Ar 500 mTorr, Hg 5 mTorr, Freq 5 MHz)

LOW POWER CONSIDERATIONS (Hg 5 mTorr, 10 W)

• Electron collisions may quench the quanta which are emitted in the interior of the plasma, and these quanta contribute most to the trapping factors.

LOW POWER CONSIDERATIONS

• As pressure increases, the electron collisions increase, but there is little observed effect on the trapping factors.

• Hg 5 mTorr, 10 W, 5 MHz

EVERLIGHT GEOMETRY AND BASE CASE

• To investigate the effect of geometry, the Everlight lamp was considered.

LAMP COMPARISONS (Ar 500 mTorr, Hg 5 mTorr)

• Cataphoresis is significant but similar in both lamps.

LAMP COMPARISONS (Ar 500 mTorr, Hg 20 mTorr)

 Due to further cylindrical axis for Everlight, cataphoresis results in isodistributed ground state density, increasing trapping factors.

LAMP COMPARISONS (Ar 100 mTorr, Hg 20 mTorr)

 A lower fill gas pressure allows more ambipolar diffusion and enhanced cataphoresis, and volume effects differentiate the two geometries.

LAMP COMPARISONS (Ar 100 mTorr, Hg 5 mTorr)

• Lower Hg density results in less defined cataphoresis.

CONCLUSIONS

- A Monte Carlo radiation transport model has been developed and interfaced with a plasma equipment model to model electrodeless lamps.
- The applied frequency does not affect the radiation transport, however increase in power increases radiation trapping factors.
- Low power studies have shown that electron collisional quenching is not important at operating conditions of interest.
- The shape of the plasma cavity affects radiation transport, due to the volume differences in ionization and cataphoresis.