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AGENDA

• Radiation transport

• Base case parameters 

• Consequences of operating conditions –

• Effect of cold spot

• Effect of ICP frequency

• Effect of ICP power

• Effect of low powers

• Consequences of change in plasma cavity shape.

• Conclusions
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RADIATION TRANSPORT
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• Resonance radiation from the Hg (63P1) (254 nm) 
and Hg (61P1) (185 nm) excites phosphors which 
generate visible light.

• This radiation may be absorbed and re-emitted 
many times prior to striking the phosphor 
(radiation trapping).

• We have modeled the radiation transport using a Monte Carlo 
module which is interfaced with a hybrid plasma equipment 
model to realistically simulate the gas discharge.

• Electrodeless gas discharges are attractive as light sources due  
to their extended lifetime.
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HYBRID PLASMA EQUIPMENT MODEL (HPEM)
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• A modular simulator for low 
pressure plasmas.

• EMM: electromagnetic fields  
and magneto-static fields

• EETM: electron temperature, 
electron impact sources, and 
transport coefficients

• FKM: densities, momenta, and 
temperatures of charged and 
neutral plasma species; and 
electrostatic potentials  
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MONTE CARLO RADIATION TRANSPORT MODULE
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• Monte Carlo photon pseudo-particles are launched from locations 
proportional to Hg* density.

• Trajectories are tracked accounting for absorption/emission 
based on Voight profile.

• Null cross section techniques account for variations in absorber
and perturber densities, collision frequency and gas temperature.

• Partial frequency redistribution of emitted photons.

• Isotope shifts and fine structure splitting.

• Effective lifetimes (residence times) of photons in plasma and exit 
spectra are calculated. 
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BASE CASE – PHILIPS QL-LIKE
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• Ar fill pressure  
500 mTorr

• Hg pressure       
5 mTorr

• Power                 
50 W

• Frequency          
5 MHz
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BASE CASE PLASMA PARAMETERS
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• Cataphoresis creates a maximum [Hg] near the walls.
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INCREASE IN COLD SPOT
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• With an increase in cold spot, the absolute absorber density 
goes up much more rapidly than the radiator density, increasing 
trapping factors.

• Tc = 38 oC (Hg 5 mTorr) • Tc = 56 oC (Hg 20 mTorr)
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INCREASE IN COLD SPOT
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• Vacuum radiative lifetimes are 1.33 ns (185 nm), and 125 ns (254 
nm), leading to orders of magnitude difference in trapping 
factors for the two lines.

• Ar 500 mTorr, 5 MHz, 50 W
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EFFECT OF COIL FREQUENCY 
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• Coil frequency is an important design parameter for power 
transfer in ICPs.

• Collisional plasma (100s mTorr) implies electron neutral 
momentum transfer frequency νm >> ω , the applied frequency.

•

• For a max electron density of 1012 cm-3, and a minimum collision 
frequency of 107 s-1, δ ≈ 30 cm

• As δ is larger than size of the vessel, changes in rf frequencies 
are unlikely to affect the radiation transport.
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EFFECT OF COIL FREQUENCY (contd.)
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• As a result, coil frequency is seen not to affect the trapping 
factors.

• Ar 500 mTorr, Hg 5 mTorr, 50 W
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EFFECT OF POWER 
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• In sealed systems, increase in power raises ionization and 
temperature but not total gas density, leading to redistribution of 
absorbers.

• 50 W • 100 W
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EFFECT OF APPLIED POWER
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• Trapping factors are seen to rise linearly with power. 

• (Ar 500 mTorr, Hg 5 mTorr, Freq 5 MHz)
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LOW POWER CONSIDERATIONS (Hg 5 mTorr, 10 W)
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• Electron collisions may quench the quanta which are emitted in 
the interior of the plasma, and these quanta contribute most to 
the trapping factors.

• Ar 500 mTorr • Ar 900 mTorr
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LOW POWER CONSIDERATIONS
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• As pressure increases, the electron collisions increase, but there 
is little observed effect on the trapping factors.

• Hg 5 mTorr, 10 W, 5 MHz
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EVERLIGHT GEOMETRY AND BASE CASE
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• To investigate the effect of geometry, the Everlight lamp was 
considered.
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LAMP COMPARISONS (Ar 500 mTorr, Hg 5 mTorr)

• Cataphoresis is significant but similar in both lamps.
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• Tr. Factor – 570 (185 nm)
3.7  (254 nm)

• 560 (185 nm)
3.7 (254 nm)
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LAMP COMPARISONS (Ar 500 mTorr, Hg 20 mTorr)
• Due to further cylindrical axis for Everlight, cataphoresis 

results in isodistributed ground state density, increasing 
trapping factors.
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• 1214 (185 nm), 8.2 (254 nm)• 1289 (185 nm), 9.1 (254 nm)
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LAMP COMPARISONS (Ar 100 mTorr, Hg 20 mTorr)

• A lower fill gas pressure allows more ambipolar diffusion and 
enhanced cataphoresis, and volume effects differentiate the 
two geometries.
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• 1791 (185 nm), 10 (254 nm)• 1592 (185 nm), 9.5 (254 nm)
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LAMP COMPARISONS (Ar 100 mTorr, Hg 5 mTorr)

• Lower Hg density results in less defined cataphoresis.
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• 629 (185 nm), 4.7 (254 nm)• 559 (185 nm), 3.7 (254 nm)
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CONCLUSIONS

• A Monte Carlo radiation transport model has been developed 
and interfaced with a plasma equipment model to model 
electrodeless lamps.

• The applied frequency does not affect the radiation transport, 
however increase in power increases radiation trapping 
factors.

• Low power studies have shown that electron collisional 
quenching is not important at operating conditions of interest.

• The shape of the plasma cavity affects radiation transport, due 
to the volume differences in ionization and cataphoresis.
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