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AGENDA

• Introduction of pyramidal microdischarge devices.

• Description of model.

• Fundamental properties of MDs sustained in neon.

• Transition from Townsend to negative glow.

• Scaling of MDs

• Concluding remarks.
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MICRODISCHARGE PLASMA SOURCES

• Microdischarges are plasma devices which leverage pd scaling to 
operate dc atmospheric glows 10s –100s µm in size.

• MEMS fabrication techniques enable innovative structures for 
displays and detectors. 

• Although similar to PDP cells, MDs are dc devices which largely 
rely on nonequilibrium beam components of the EED.

• Electrostatic nonequilibrium results from their small size.  Debye 
lengths and cathode falls are commensurate with size of devices.
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PYRAMIDAL MICRODISCHARGE DEVICES

• Si MDs with 10s µm pyramidal cavities display nonequilibrium
behavior: Townsend to negative glow transitions. 

• Small size also implies electrostatic nonequilibrium.
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• S.-J. Park, et al., J. Sel. Topics Quant. 
Electron 8, 387 (2002); Appl. Phys. Lett. 
78, 419 (2001).
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• Charged particle continuity (fluxes by Sharfetter-Gummel form)

• Poisson’s Equation for Electric Potential

• Bulk continuum electron energy transport and MCS beam.

• Neutral continuity and energy transport. 
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2-D MODELING OF MICRODISCHARGE SOURCES 
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DESCRIPTION OF MODEL:  MCS AND MESHING

• Superimpose Cartesian MCS 
mesh on unstructured fluid 
mesh.  Construct Greens 
functions for interpolation 
between meshes.

• Electrons and their progeny are 
followed until slowing into bulk 
plasma or leaving MCS volume.

• Electron energy distribution is 
computed on MCS mesh.

• EED produces source functions 
for electron impact processes 
which are interpolated to fluid 
mesh.

• Transport of energetic 
secondary electrons is 
addressed with a Monte Carlo 
Simulation.
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MODEL GEOMETRY: Si PYRAMID MICRODISCHARGE

Investigations of a cylindrically symmetric Si pyramid 
microdischarge were performed.
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MODEL GEOMETRY: Si PYRAMID MICRODISCHARGE

Meshing is absolutely critical to resolve small structures and 
distant boundaries.

Typical Mesh: 5,000-10,000 nodes, 102-103 dynamic range 
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BASE CASE: Ne, 600 Torr, 
50 µm DIAMETER
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Optimum operation 
produces large 
enough charge 
density to warp 
electric potential into 
cathode well. 

Inspite of large Te, 
ionization is 
dominated by beam 
electrons

• Ne, 600 Torr, 50 µm, 
200 V, 1 MΩ
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BASE CASE: Ne, 600 Torr 
50 µm DIAMETER
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• Ne, 600 Torr, 50 µm, 
200 V, 1 MΩ

There is essentially 
no region of quasi-
neutrality or which is 
positive column-like.

Monomer and dimer 
ions are segregated.

Excited state 
densities > 1015 cm-3

rival macroscopic 
devices
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TRANSITION TO NEGATIVE-GLOW BEHAVIOR

• Although geometry precludes true hollow cathode behavior, 
negative glow behavior sets in a lower pressures.

• Characterize negative glow by  S[Ne2+] / (S[Ne+] + S[Ne2+] )

• Ne, 50 µm diameter, 200 V, 1 MΩ
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SCALING WITH PRESSURE: PASCHEN BEHAVIOR

• Although sensitive to 
ballasting and current 
density lower pressures 
requiring larger applied 
voltages also produce 
large plasma densities.

• Ne, 50 µm diameter, 1 MΩ

• With  pd=1-10 Torr-cm, these microdischarge devices 
display Paschen behavior.
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SCALING WITH PRESSURE: PLASMA PROPERTIES

• Over a range of pressures that V(applied) and R(ballast) can be 
constant, confinement at higher pressures produces higher peak 
plasma densities.  

• Ne, 50 µm diameter, 200V, 1 MΩ

• 550 Torr
[2.1 x 1013 cm-3]  

• 650 Torr
[3.9 x 1013 cm-3]  

• 750 Torr
[5.6 x 1013 cm-3]  

• [e] x 1012 cm-3
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SCALING CONSIDERATIONS:  CATHODE FALL THICKNESS

• In MDs, the cathode fall thickness may be commensurate with 
cavity size.  Current density is therefore critical to scaling. 

• Ne, 50 µm diameter, 600 Torr

• -210 V, 1 MΩ
[e]= 4.9 x 1013 cm-3

• Low j (and [e]) may 
result in cathode 
fall not being 
conformal to 
cathode.

• -200 V, 1.75 MΩ
[e]= 5.3 x 1012 cm-3
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SCALING WITH SIZE: pd, BALLAST = CONSTANT

• Scaling while maintaining pd, V(applied) and R(ballast) constant
results in a reduced j and [e] in the larger device.  The plasma is 
not conformal to the cathode.  

• Ne, -200 V, 1 MΩ
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SCALING WITH SIZE: pd, j = CONSTANT

• Scaling while maintaining pd and j constant produces similar 
plasma densities and conformality to the cathode.  

• Ne, -200 V

• 400 Torr  • 600 Torr  • 1000 Torr  
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CONCLUDING REMARKS

• MDs differ from macroscopic devices in that plasma 
scale lengths are commensurate with device dimensions.

• Scaling of MDs with pressure (traditionally “pd”) likely 
also required λ/L to remain constant or less than a critical 
value.

• Scaling with complex shapes must consider all 
dimensions.

• The transition from Townsend to negative glow is largely 
geometrically dependent, and can be controlled to some 
degree by shape.
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