INVESTIGATION OF AXIALLY FLOWING He/O₂ PLASMAS FOR OXYGEN-IODINE LASERS*

D. Shane Stafford^a and Mark J. Kushner^b University of Illinois ^aDepartment of Chemical and Biomolecular Engineering ^bDepartment of Electrical and Computer Engineering Urbana, IL 61801

> Email: dstaffor@uiuc.edu mjk@uiuc.edu

http://uigelz.ece.uiuc.edu

September 2004

*Work supported by NSF (CTS 03-15353) and AFOSR/AFRL

AGENDA

- Introduction
 - Conventional vs. discharge COILs
 - Previous modeling
- Description of model
 - Axial flowing plasma kinetics model
 - Reaction mechanism
- Results
 - Yield scaling with energy deposition
 - Axial propagation of plasma zone
 - Pulse modulated rf discharges
- Conclusion

OXYGEN-IODINE LASERS

• $O_2(^1\Delta)$ dissociates I_2 and pumps I which lases on the ${}^2P_{1/2} \rightarrow {}^2P_{3/2}$ electronic transition.

 $O_2(^1\Delta)$ + $I(^2P_{3/2})$ ↔ $O_2(^3\Sigma)$ + $I(^2P_{1/2})$ $I(^2P_{1/2})$ → $I(^2P_{3/2})$ + $h\nu$ (1.315 µm)

- Conventional COILs obtain $O_2(^1\Delta)$ from a liquid phase reaction.
- Electrical COILs obtain $O_2(^1\Delta)$ by exciting O_2 in discharge.

ELECTRIC DISCHARGE COIL MODELING

- Zero-dimensional plug flow modeling results
 - O₂(¹∆) yield scales with specific energy deposition into O₂ species, peaking near 5–8 eV/molecule.
 - Threshold yields of ~15%* have been demonstrated with adequate specific energy deposition.
- Further modeling needs
 - Axial-transport of species and effect on discharge kinetics.
 - Upstream and downstream propagation of the plasma expanding the power deposition zone.
 - Differences between CCP and ICP power deposition are difficult to address with 0-D model.
- A one-dimensional axial model was developed to address these needs.

*D. Carroll, *et. al*, Appl. Phys. L. 85(8), 2004.

COMPUTATIONAL SCHEME

- Conservation equations for species densities, gas energy, and electron energy are advanced for 1-D axial flow.
- Source terms are computed by plasma kinetics module.
- Power depositions are computed by CCP and ICP modules.
- Boltzmann solver periodically updates e-impact rate and transport coefficients as a function of position.

AXIAL PLASMA MODEL

 Conservation equations for species densities are solved for a constant mass flux:

$$\rho \vec{v} = const. \qquad \qquad \frac{\partial N_i}{\partial t} = -\nabla \cdot \left[N_i \left(\vec{v} + \vec{v}_{diff,i} + \vec{v}_{drift,i} \right) \right] + S_i + W_i$$

 Drift velocities are obtained by calculating the axial ambipolar electric field:

$$\vec{E}_a = -\frac{\sum_i q_i N_i \vec{v}_{diff,i}}{\sum_i q_i^2 \mu_i N_i}$$

• Gas and electron energy equations are integrated:

$$\begin{split} \rho c_{P} \frac{\partial T}{\partial t} &= -\rho \vec{v} c_{P} \cdot \nabla T - \nabla \cdot \vec{q} - \tau_{zz} \nabla \cdot \vec{v} + \frac{Dp}{Dt} + \frac{\kappa}{\Lambda^{2}} \left(T_{wall} - T_{gas} \right) + \Delta h_{rxn} + h_{e} \\ \frac{\partial \left(\frac{3}{2} n_{e} k_{B} T_{e} \right)}{\partial t} &= -\nabla \cdot \vec{q}_{e} + P_{d} - h_{e} + \sum_{l} n_{e} k_{l} N_{l} \Delta \varepsilon_{l} \end{split}$$

POWER DEPOSITION MODELS

• ICP module estimates axial magnetic field from coils wound on discharge tube and includes skin depth effect:

$$B_{i} = \sum_{j}^{N} \frac{2\mu_{0}R^{2}I}{4r_{ij}^{3}} \exp\left(\frac{-r_{ij}}{\delta_{ij}}\right)$$

• CCP module models the discharge as a transmission line, where each grid point represents a node:

REACTION MECHANISM

BASE CASE: ElectriCOIL EXPERIMENT

20 mmol/s of He/O₂=8/2 at 10.6 Torr. Power = 340 W CCP at 13.56 MHz.

SPECIFIC ENERGY DEPOSITION SCALING

 O₂(¹∆) yield scales with specific energy input to O₂ species as predicted by 0-D model.

EFFECT OF CCP POWER

- Dissociation increases at large specific energy, reducing the efficiency of O₂(¹∆) production.
- Increased conductivity causes plasma zone to spread at higher powers.

ICP vs CCP

PULSED CCP

- Pre-ionizing the plasma with a high power pulse allows discharge to operate below the self-sustained E/N, nearer to the optimal E/N for O₂(¹Δ) production.
- Overall efficiency of pre-ionization depends on the extent of pre-ionization and the delay between pulses.

PULSED CCP: PULSE DELAY & AMPLITUDE

- Average T_e of pulsed discharge is reduced ≈1 eV relative to cw discharge.
- In cw discharge T_e is optimal for dissociation, but in pulsed discharge T_e is optimal for $O_2(^{1}\Delta)$ production.

20 mmol/s, He/O₂=8/2 at 10.6 Torr. Peak 2.5 kW, avg. 340 W CCP at 100 MHz.

PULSED CCP vs. CW

- Modest pulsing schemes significantly outperform cw discharges at these conditions.
- Pulsing reduces the average T_e (and E/N), increasing O₂(¹∆) production and reducing dissociation to O atoms.

20 mmol/s, He/O₂=8/2 at 10.6 Torr. Peak 2.5 kW, avg. 340 W CCP at 100 MHz.

CONCLUSIONS

- A 1-D axially flowing discharge model was developed to investigate the effects of axial transport on $O_2(^{1}\Delta)$ yields.
- Conservation equations for species densities, gas energy, and electron energy were solved.
- O₂(¹∆) yield in rf ICP and CCP discharges was found to scale with specific energy deposition into O₂ species.
- CCP discharges produced somewhat higher O₂(¹∆) yields than ICP discharges due to their broader power deposition zone.
- Pulsed discharges using a high power pre-ionizing pulse produced the highest yields, \approx 50% higher than CCP, by reducing the T_e below the self-sustaining value.

ACKNOWLEDGEMENTS

- UIUC/CU-Aerospace Chemical Laser Group
 - D. Carroll
 - W. Solomon
 - J. Verdeyen
 - J. Zimmerman