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OXYGEN-IODINE LASERS

e O,(*A) dissociates I, and pumps | which lases on the 2P, = %P,
electronic transition.

O,(*A) + 1(°P3, ) & O,(3Z) + (3P, )
I(°Py; ) > 1(*P3,) +hv  (1.315 um)

e Conventional COILs obtain O,(*A) from a liquid phase reaction.
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ELECTRIC DISCHARGE COIL MODELING

e Zero-dimensional plug flow modeling results
e O,(*A) yield scales with specific energy deposition
Into O, species, peaking near 5-8 eV/molecule.
e Threshold yields of ~15%* have been demonstrated
with adequate specific energy deposition.

e Further modeling needs
e Axial-transport of species and effect on discharge
Kinetics.
e Upstream and downstream propagation of the
plasma expanding the power deposition zone.
e Differences between CCP and ICP power deposition
are difficult to address with 0-D model.

e A one-dimensional axial model was developed to address
these needs.

*D. Carroll, et. al, Appl. Phys. L. 85(8), 2004. University of lllinois
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COMPUTATIONAL SCHEME

e Conservation equations
for species densities, gas

Bolt
energy, and electron olver
energy are advanced for |
1-D axial flow. |

N(x.b), T., i

e Source terms are Tgas |
computed by plasma / \ i
Kinetics module. v

P plasma
dep chemistry
. source

e Power depositions are sources
computed by CCP and
ICP modules.

conservation

equation

e Boltzmann solver periodically solver

updates e-impact rate and
transport coefficients as a
function of position.
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AXIAL PLASMA MODEL

e Conservation equations for species densities are solved for
a constant mass flux:

pV = const. % ==V [Ni (\7 + Vit i T Varite. )]"‘ S; +W,

e Drift velocities are obtained by calculating the axial
ambipolar electric field:
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e Gas and electron energy equations are integrated:
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POWER DEPOSITION MODELS

e |ICP module estimates axial magnetic field from coils
wound on discharge tube and includes skin depth effect:

e CCP module models the discharge as a transmission line,
where each grid point represents a node:
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REACTION MECHANISM
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BASE CASE: ElectriCOIL EXPERIMENT
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SPECIFIC ENERGY DEPOSITION SCALING
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O,(*A) yield scales with specific energy input to O, species
as predicted by 0-D model.

0.4
ﬁ — f ev 0-D model
of8%, o4
O, inet o 03—gix % .
5 S e S
02 St} 5
I ] ‘_/J g L [ N ] :
0.3 1D model 1 %o e .
© 0.0 -
D 0 10 20
i 0.2} N Specific Energy Deposition (eV)
I~
Fﬁh
o 0.1} d
00 1 1
0 1 2 3
Specific Energy Deposition (eV) University of lllinois

Optical and Discharge Physics



EFFECT OF CCP POWER
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e Dissociation increases at large
specific energy, reducing the
efficiency of O,(*A) production.

e Increased conductivity causes
plasma zone to spread at
higher powers.
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|ICP vs CCP
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PULSED CCP

e Pre-ionizing the plasma with a high power pulse allows
discharge to operate below the self-sustained E/N, nearer to

the optimal E/N for O,(*A) production.

e Overall efficiency of pre-ionization depends on the extent of
pre-ionization and the delay between pulses.
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PULSED CCP: PULSE DELAY & AMPLITUDE

e Average T, of pulsed discharge is reduced =1 eV relative to
cw discharge.

e In cw discharge T, is optimal for dissociation, but in pulsed
discharge T, is optimal for O,(*A) production.
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PULSED CCP vs. CW
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e Modest pulsing schemes
significantly outperform
cw discharges at these
conditions.

e Pulsing reduces the
average T, (and E/N),
Increasing O,(*A)
production and reducing
dissociation to O atoms.

20 mmol/s, He/O,=8/2 at 10.6 Torr.
Peak 2.5 kW, avg. 340 W CCP at 100 MHz.

University of Illinois
Optical and Discharge Physics



CONCLUSIONS
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A 1-D axially flowing discharge model was developed to
Investigate the effects of axial transport on O,(*A) yields.

Conservation equations for species densities, gas energy,
and electron energy were solved.

O,(*A) yield in rf ICP and CCP discharges was found to scale
with specific energy deposition into O, species.

CCP discharges produced somewhat higher O,(*A) yields
than ICP discharges due to their broader power deposition
zone.

Pulsed discharges using a high power pre-ionizing pulse
produced the highest yields, *50% higher than CCP, by
reducing the T, below the self-sustaining value.
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