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PLASMA CHEMISTRY MONTE CARLO MODEL
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•  The PCMC model uses data from the HPEM
    along with heavy body reaction rates and
    surface reactions.

•  Flux distributions are produced
    which can be used by the
    Monte Carlo Feature Profile
    Model (MCFPM) to determine
    the time evolution of etch
    profiles.
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MONTE CARLO FEATURE PROFILE MODEL (MCFP)
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•  The MCFP model determines the
    time dependent etch profiles across the
    substrate using ion and neutral angular
    energy distributions from the PCMC model.

•   Surface processes are implemented using
    a chemical reaction scheme:

        e.g.,  Cl   + SiCl3(s)  -->  SiCl3(g) + Cl2

•   Many different processes can be included:
    thermal etching, ion assisted etching,
    sputtering, redeposition, passivation, etc.

•   Parametric forms for reaction coefficients:
- energy dependence
- angular dependence

•   Many different chemistries and feature
    shapes can be examined by modifying the
    reaction scheme and material mesh. 
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SPECULAR SIDEWALL REFLECTION

•  High energy particles
   which impact at a small 
   angle to the surface tangent can retain >90%
   of their energy and reflect specularly.
•  This effect leads to enhanced etching of the 
   trench bottom due to “focusing” of the high
   energy flux near the sidewalls.
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SPECULAR REFLECTION IMPLEMENTATION
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φ

φ

1. Particle impact with filled mesh cell.

2. Surface angle determined using a least squares
fit for n  neighboring surface cells. (n =9)

3. Ion enhanced reactions calculated as:

Y=α(E1/2-Eth1/2) x Fadey(φ)

4. Specular energy of outgoing particle is
calculated as:

E/E0=min[1,E/Eth] x

max[0,(φ−φth)/(90o-φth)]

5. Particle is moved out along outgoing path
until clear of filled cells.
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MULTIPARTICLE MESH CELLS
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• To increase the statistical significance of the
surface chemistry, mesh cells can be
weighted to be larger than gas particles.

• When a particle impacts a mesh cell, it 
undergoes a two step algorithm to determine
the interaction.

1. Randomly determine which surface 
species with which to interact weighted
by the fraction of the cell filled by that 
species.

2. Randomly determine the chemical 
interaction weighted by the relative
reaction probabilities given in the input 
surface chemistry.

Cl+

Si

SiCl
SiCl2

SiCl3

- Start:   50%

- Redist.: >80%

- Empty: <20%
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Mesh:Particle Weight Ratio

1:1 5:1 10:1 20:1
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As the ratio is increased the surface statistics increase.

The surface becomes less “noisy”.

The overall trench etch rate stabilizes.

Above 10:1, the profile changes become less significant
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ION ENERGY ANGULAR DISTRIBUTIONS
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• 10 mTorr Cl2 (60 sccm)
600 W ICP
LAM 9400SE Reactor

• The higher bias leads
to a more capacative IED

• For both cases the average
incoming ion angle ∼ 2o
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Specular Reflection
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Currently, there is no experimental
results for specular reflection
measurements.

Helmer and Graves demonstrated
specular reflection for a molecular
dynamics model.

Necessary to determine the energy
and angular dependence of specular
reflection.

An attempt has been made to
determine the possible cutoff energies
and angles for the system.
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The Angular Dependent Etch Yield (ADEY) of the ion flux affects both the microtrench
development and the sidewall slope.

Experimental result by Chang and Sawin (Case 1).

As the slope of the ADEY increases the sidewalls become more vertical and the
microtrenching decreases due to lack of “focusing” of the ions by the sidewalls
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Specular Reflection
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For large cutoff angles and energies,
there is little microtrenching.

As the cutoff angle is decreased, the
microtrenching dramatically increases
and the sidewall becomes more
vertical.

Above 30 , the trenching becomes
reentrant.

Since microtrenching is seen for 50 W
rf bias cases, the cutoff energy is
expected to be below 75 eV.

The best range for microtrench
formation is near 50 eV and between
30 and 60 .

0

0 0
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EXPERIMENTAL COMPARISON
0 W Bias 50 W Bias 100 W Bias

• 9400SE LAM TCP Reactor
10 mTorr Cl 2 (60 sccm)
600 W Bias
LSI Logic Corporation

• Comparison to experiment shows reasonable
agreement if sloped resist sidewalls are used.

• At high bias powers, simulation shows
asymmetric microtrenching due to slight
asymmetry of the IEAD and numerical
sensitivity of the model.

Resist
Si
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3-d FINITE TRENCH EFFECTS
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• The asymmetric IEAD from over the subwafer dielectric
was used.

• The 2D model result is indicative of a infinite trench and
shows limited skew due to the IEAD.
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3-d FINITE TRENCH EFFECTS
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• LAM TCP 9400SE Reactor
10 mTorr Cl 2 (60 sccm)
100 W RF Bias
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• In the center of the trench, the profile is similar
to the 2D simulation.

• Near the endwall (0.05 µm) the asymmetry and
underetch is strongly evident.

• This will require > 30% overetch to clear the
endwall corners.



3D Finite Trench (IAD)
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• The angular distribution of the standard case is 3o

• For narrower angular distributions, the endwalls
taper strongly inward leading to differential etch
rates near them.

• For broader angular distributions, the endwalls
taper outward producing undercutting but also
uniform bottom etch rates.
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3-d FINITE TRENCH EFFECTS
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• LAM TCP 9400SE Reactor
  10 mTorr Cl 2 (60 sccm)
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•  Near the shadowed edge the profile is
   strongly underetched.

•  Due to the narrow width
   the endwalls show greater
   curvature.

•  For the wider trench, the
   shadowing of the endwalls
   is decreased.
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3-d FINITE TRENCH EFFECTS
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• LAM TCP 9400SE Reactor
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100 W RF Bias
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• Narrowing the angular spread
of the IEAD produces a sloped
sidewall.

• The broad IEAD produces
undercutting the greatest
corner rounding

• Sticking coefficient of SiClx
is 10%

Standard
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3-d FINITE TRENCH EFFECTS
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• LAM TCP 9400SE Reactor
10 mTorr Cl 2 (60 sccm)
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• Sticking coefficient of SiClx
is 30%.

• As the redeposition rate
increases, the sidewalls
taper inward.

• For the narrow IEAD, the
endwall encroaches on the
trench leading to a dramatic
underetch.
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SIMULATED REACTOR PROPERTIES

•  LAM TCP Type Reactor
•  10 mTorr
•  1 kW ICP (13.56 MHz)
•  300W Substrate Bias (13.56 MHz)
•  Ar/CF4  60/40 (200 sccm)

e- Density Power Deposition
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ION ENERGY ANGULAR DISTRIBUTION

MAX

MIN

• The combined IEAD for
Ar+ and CF3+

• The IAD ranges to 10o

• The IED ranges from 30 to 140 eV
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3-d FINITE TRENCH EFFECTS
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3-d DUAL DAMASCENE ETCH
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• 10 mTorr Ar/CF 4 (200 sccm)
1 kW ICP
300 W RF Bias

1 2 3

• The single etch step in dual damascene processing requires highly
anisotropic etching due to the extend etch through the vias.

• Undercutting becomes more pronounced for the upper trench region.



CONCLUSIONS

• The Monte Carlo-Feature Profile Model (MCFPM) has been extended to
  3 dimensions.

• Comparison of otherwise identical 2-d infinite trench and 3-d finite length
  trench trenches show that:

• Proximity to 3-plane corners produces significant side-wall curvature.
• 2-d models underpredict etch rate and required over-etch to clear corners.

• Redeposition of etch product on end-walls of finite length trenches can produce
  significant curvature. As a consequence, IEADs having finite angular breadth
  produce the most aniostropic etches.

• Specular reflection has been examined and it’s role in microtrenching and
  sidewall slope.  Comparison to experiments indicates that the angular-dependent
  -etch yield in large part determines energy dependence of microtrenching.

• Dual damascene structures were examined demonstrated different degrees
  of undercutting on the upper and lower levels.
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