$O_2(^{1}\Delta)$ AND I($^{2}P_{1/2}$) PRODUCTION IN FLOWING AFTERGLOWS FOR OXYGEN-IODINE LASER: EFFECT OF NO/NO₂ ADDITIVES*

Ramesh A. Arakoni Dept. of Aerospace Engineering University of Illinois Urbana-Champaign, IL 61801, USA.

> Natalie Babaeva and Mark J. Kushner Dept. of Electrical Engineering Iowa State University, Ames, IA 50011, USA.

34th IEEE Conference on Plasma Science, June 17 – 22, 2007, Albuquerque, NM

*Supported by NSF and AFOSR.

AGENDA

- Oxygen-lodine Lasers: Why use electrical discharges?
- Description of models *nonPDPSIM* (2d), *GlobalKIN* (plug-flow).
- Oxygen-lodine reaction kinetics with I₂ injection and NO_x additives.
- Scaling with power and NO mole fraction in the discharge.
- Effect of NO₂ addition in the afterglow.
- Concluding Remarks.

OXYGEN-IODINE LASERS: eCOILS

- In chemical oxygen-iodine lasers (COILs), oscillation at 1.315 µm $[I^{2}(P_{1/2}) \rightarrow I({}^{2}P_{3/2})]$ in atomic iodine is produced by collisional excitation transfer from $O_{2}({}^{1}\Delta)$ to I_{2} and I.
- Supersonic expansion required for gain to reduce importance of back-reaction.
- First generation COILs use liquid phase reactions to generate $O_2(^1\Delta)$ from a basic solution of H_2O_2 with CI_2 .
- In electrically excited COILs, a plasma is used to generate the O₂(¹Δ) by electron impact excitation of O₂.

• Electron impact excitation of O₂ has three primary branches:

$$e + O_2 \rightarrow O + O + e \rightarrow O_2(^1\Delta, ^1\Sigma) + e$$

• O atom production has advantages and disadvantage:

```
0 + I_2 \rightarrow IO + I0 + IO \rightarrow O_2 + I0 + I^* \rightarrow O + I
```

NO and NO₂ additives control densities of O atoms.

NO₂ + O → NO + O₂ (k = 4.2×10^{-12} cm³ s⁻¹) (FAST) NO + O + M → NO₂ + M (k = 1.0×10^{-31} cm⁶ s⁻¹) (SLOWER)

• NO: Reduce T_e to optimal values (1 - 1.5 eV).

Iowa State University Optical and Discharge Physics

GEOMETRY AND SCOPE

- Computationally investigate consequences of NO and NO₂ additives on O₂($^{1}\Delta$) production and gain.
 - Inlet: 3 Torr, 6 slpm, He/O₂/NO: 70-x/30/x.
 - Power deposition: 40 400 W.
 - 1st nozzle: 36 sccm He/NO or He/NO₂.
 - 2nd nozzle: 100 sccm He/l₂.
 - Yield of $O_2(^1\Delta)$ and gain (G).

 $Y = \frac{[O_2(^{1}\Delta)] + [O_2(^{1}\Sigma)]}{([O_2] + [O_2(v)] + [O_2(^{1}\Delta)] + [O_2(^{1}\Sigma)] + 0.5[O] + 1.5[O_3])}$

Gain =
$$\sigma([I^*] - 0.5[I])$$
 $\sigma = (1.33 \times 10^{-16}) \sqrt{\frac{1}{T_g}} \text{ cm}^2$

Iowa State University Optical and Discharge Physics

icops07_1a4_03

- Node-centric finite volume method.
- Poisson's Equation for Electric Potential (including surface and volumetric charges).
- Continuity (electron, heavy particle collisions, surface chemistry, secondary emission), SG fluxes with advective flow field.
- Rates: Coefficients obtained from Boltzmann's equation solution for EED.
- Fluid: Density (ρ), Momentum (ρu, ρv) and gas temperature obtained using unsteady, compressible Navier-Stokes equations.
- Individual species advected with superimposed diffusive transport.
- Time integration by iterative Newton method using numerically calculated Jacobians.

GLOBAL PLASMA MODEL

- Global model run in plug-flow mode.
- Boltzmann solver updates eimpact rate coefficients.
- Inputs:
 - Power density vs position
 - Reaction mechanism
 - Inlet speed (adjusted downstream for T_{gas})
- Assume no axial diffusion.

$O_2 - I_2$ KINETICS: IMPORTANT REACTIONS

 $\begin{array}{ll} \hline \text{lodine Dissociation:} \\ O_2(^{1}\Delta) + I_2 \rightarrow O_2 + I_2^{*} & (k = 7.0 \times 10^{-15} \text{ cm}^{-3} \text{ s}^{-1}) \\ O_2(^{1}\Delta) + I_2^{*} \rightarrow O_2 + I + I & (k = 3.0 \times 10^{-15} \text{ cm}^{-3} \text{ s}^{-1}) \\ O_2(^{1}\Sigma) + I_2 \rightarrow O_2 + I + I & (k = 2.8 \times 10^{-11} \text{ cm}^{-3} \text{ s}^{-1}) \\ O + I_2 \rightarrow IO + I & (k = 1.4 \times 10^{-10} \text{ cm}^{-3} \text{ s}^{-1}) \\ O + IO \rightarrow O_2 + I & (k = 1.4 \times 10^{-10} \text{ cm}^{-3} \text{ s}^{-1}) \\ \end{array}$

<u>Pumping Reaction:</u> $O_2(^1\Delta) + I \rightarrow O_2 + I^*$ (k = 7.7 × 10⁻¹¹ (T_g/300)⁻¹ cm⁻³ s⁻¹)

Quenching:

 $\begin{array}{lll} {\rm O} + {\rm I}^* \to {\rm O} + {\rm I} & ({\rm k} = 8.0 \times 10^{-12} \, {\rm cm}^{-3} \, {\rm s}^{-1}) \\ {\rm O}_2 + {\rm I}^* \to {\rm O}_2(^1 \Delta) \ + {\rm I} & ({\rm k} = 1.0 \times 10^{-10} \, ({\rm T}_g/300)^{-1} \, {\rm e}^{-403/{\rm T}g} \, {\rm cm}^{-3} \, {\rm s}^{-1}) \end{array}$

• Ref: A. D. Palla Proc. SPIE. Vol 6101, 610125 (2006).

BASE CASE: PLASMA CHARACTERISTICS

- T_e is higher than optimum value (1-1.5 eV).
- Addition of NO can lower T_e as ionization potential of NO is lower (9.26 eV).
- Density of negative ions need to be controlled as they can quench $O_2(^1\Delta)$.

$$O^- + O_2(^1\Delta) \rightarrow O_3 + e^-$$

(k= 3 × 10⁻¹⁰ cm³ s⁻¹)

 6 Ipm, 3 Torr, He/O₂/NO: 67/30/3, 40 W.

BASE CASE: NEUTRAL FLOW, DENSITIES

- $O_2(^{1}\Delta)$ is a long-lasting species, accumulates up to the I_2 injection.
- O is a quencher of upper level of laser.
- Complete dissociation of I₂ in these conditions.
- Second peak in T_g due to exothermic reaction between NO₂ and O. NO₂ + O \rightarrow NO + O₂ (2 eV)
- 6 slpm, He/O₂/NO:67/30/3, 40 W.
- 36 sccm, 100 % NO (1st nozzle).
- 100 sccm, 1% I₂ (2nd nozzle).

VALIDATION OF REACTION MECHANISM

- 10 Torr, He/O₂: 80/20, 20 mmol sec⁻¹
- Pure NO₂ through the 1st inlet.
- 0.008 mmol s⁻¹ l₂ through 2nd inlet.
- Diameter 4.9 cm, gain calculated at 10 cm downstream from I_2 injection (warm gas results in negative gain).
- At high powers, dissociation of O₂ (to O) causes reduction in yield.
- Addition of NO₂ recoups O atoms which would otherwise quench I^{*}.
- Ref: D. L. Carroll et al, IEEE J. Quantum Electron. 41, 213 (2000).

NO ADDITION: PLASMA, TEMPERATURE

 [e] increases due to lower IP of NO (9.26 eV), recouping of -ve ions by NO.

 $NO + O^- \rightarrow NO_2 + e$

 Increase in T_{gas} due to exothermic reactions:

> NO + O + M \rightarrow NO₂ + M (308 kJ mol⁻¹) NO₂ + O \rightarrow NO + O₂ (193 kJ mol⁻¹)

NO ADDITION: POWER INTO SPECIES

- Boltzmann calculations based on the T_e in the discharge.
- Power expended into NO increases linearly.
- Power expended in exciting O₂(¹Δ) remains a constant.
 - Decrease in power into O_2 , but T_e is lower.
 - Excitation of O₂(¹∆) efficient at lower T_e (1-1.5 eV).

Iowa State University Optical and Discharge Physics

- O(¹D) produces O₂(¹ Δ) and O₂(¹ Σ) by collisions with O₂.
- [O₂(¹∆)] decreases due to quenching of O(¹D) by NO.

NO + O(¹D) \rightarrow NO + O (k = 4.0 ×10⁻¹¹) NO₂ + O(¹D) \rightarrow NO + O₂ (k = 4.0 ×10⁻¹⁰)

- Yield not very different for NO < 4%.
- Inlet: 6 lpm, 3 Torr, He/O₂/NO: 70-x/30/x, 40 W.
- 2nd nozzle: 100 sccm, 1% I_{2.}

icops07_1a4_12

EFFECT OF NO ADDITION: O AND $O_2(1\Sigma)$

 [O] rapidly decreases with NO addition due to recouping of O atoms by NO.

 $NO + O + M \rightarrow NO_2 + M$

 $NO_2 + O \rightarrow NO + O_2$

• $[O_2(^{1}\Sigma)]$ increases with NO addition due to lack of conversion of $O_2(^{1}\Sigma)$ to $O_2(^{1}\Delta)$.

 $O + O_2(^{1}\Sigma) \rightarrow O + O_2(^{1}\Delta)$

- Inlet: 6 lpm, 3 Torr, He/O₂/NO: 70-x/30/x, 40 W.
- 2nd nozzle: 100 sccm, 1% I_{2.}

NO ADDITION: I AND I*

NO ADDITION: GAIN

- At large NO mole fractions, positive gain extends over larger regions.
- Useful in optimizing optics and multi-pass resonators.

Gain =
$$\sigma([I^*] - 0.5[I]) \text{ cm}^{-1}$$

 $\sigma = (1.33 \times 10^{-16}) \sqrt{\frac{1}{T_g}} \text{ cm}^2$

• Note: Mach 2 equivalent rate coefficients

- Inlet: 6 lpm, 3 Torr, He/O₂/NO: 70-x/30/x, 40 W.
- 2nd nozzle: 100 sccm, 1% I_{2.}

Iowa State University Optical and Discharge Physics

icops07_1a4_15

POWER, NO: EFFECT ON GAIN

- Densities 2 cm downstream of I₂ injection.*
- Addition of NO most effective at high powers where [O] and the quenching by [O] are large.
- By recouping O atoms, feedstock of O_2 is maintained.
- Inlet: 6 lpm, 3 Torr, He/O₂/NO: 70-x/30/x.
- 2nd nozzle: 100 sccm, 1% I_{2.}

Ref: T.M.Muruganandam et al, AIAA J. 40, 1388 (2002).

NO_2 : DENSITIES OF O, $O_2(^1\Delta)$

- NO₂ addition through 1st nozzle.
- NO₂ addition quickly consumes O atoms as the reaction of NO₂ and O is fast (2-body reaction).
- Increase in T_g lowers $[O_2(^1\Delta)]$ near 1^{st} nozzle, but yield does not change.

- Inlet: He/O₂/NO: 67/30/3.
- 1st nozzle: 100 sccm, 1% l_{2.}

- Impact of NO₂ significant at low NO inlet mole fraction.
- At high NO mole fractions, yield of O₂(¹∆) reduces thereby reducing [l^{*}] and gain.

- Inlet: He/O₂/NO: 70-x/30/x.
- 1st nozzle: He/NO₂ flow, 2nd nozzle: 1 sccm I₂.

SCALING WITH I₂ FLOW: GAIN, O₂(¹ Δ)

CONCLUDING REMARKS

- Production of $O_2(^1\Delta)$ in a He/ O_2/NO discharge for use in eCOILs.
- Small amount of NO reduces the T_e and increases [e], both of which improve $O_2(^{1}\Delta)$ production.
- Consumption of O by NO is important when scaling to higher power, as it helps maintain feedstock of O₂.
- Small amounts of NO₂ prior to injection of I₂ help in quickly recouping O atoms which quench the upper level (I^{*}).

IMPORTANCE IN CONTROLLING DENSITY OF O

- In the absence of quenching by O, [I*] reaches an equilibrium value based on yield of $O_2(^1\Delta)$.
- Reduction of O helps in preserving the I^{*} and $O_2(^1\Delta)$ which increases the laser performance and improves robustness of the system.
- Inlet: He/O₂/NO: 67/30/3.
- 2nd nozzle: 100 sccm, 1% l₂

Iowa State University Optical and Discharge Physics