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AGENDA

e Applications of Low Temperature Plasmas

e What challenges and opportunities lie ahead for plasma
technologies?

o Materials Processing

e Lighting

e Atmospheric Pressure Plasmas
e Bioscience

e Nanoscience

e Concluding remarks
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DEFINITION OF TECHNOLOGICAL PLASMAS

e Technological plasmas are a power transfer media.

¢ Electrons transfer power from the "wall plug” to internal modes of
atoms / molecules to make “benign” species into “reactive” species.
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e Once activated, their physical or chemical potential may be used to
make products (add or remove materials, photons...)
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PLASMA MATERIALS PROCESSING FOR
MICROELECTRONICS
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PLASMA MATERIALS PROCESSING FOR
MICROELECTRONICS

e The fabrication of conventional microelectronics has met and
bested extreme challenges as the nm scale is approached and
exceeded.

e Plasma science has played a critical role in virtually all aspects
of meeting these challenges

ICPP04_06

Physical Vapor Deposition

Plasma Enhanced Chemical Vapor Deposition

Etching
Cleaning
Passivation

e Plasma sources of UV radiation for lithography (Hg lamps

to EUV)
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PLASMA ETCHING-TRANSISTORS, INTERCONNECT

e Plasma etching is at the heart of microelectronics fabrication.
Advance techniques have produced feature sizes below
lithography limits.

e Challenges for etching novel low-k (dielectric) materials for

interconnect have been met.
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SOPHISTICATED PLASMA TOOLS

e AMAT-Komatsu PECVD
for flat panel displays

e AMAT lonized Metal PVD
CPPO4_10 e Ref: Ashok Das Optical and Discharge Physics
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PLASMA PROPERTIES: ICPs IN Ar/c-C,F./CO/O,
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SELECTIVITY IN MICROELECTRONICS FABRICATION

e Fabricating complex microelectronic structures made of
different materials requires extreme selectivity in, for example,
etching Si with respect to SiO,.

Silicide §

Silicon -0

.- Ref: G.Timp

e AMD 90 nm Athlon 64

e Complex features are fabricated by selectively removing one
material but not another with near monolayer resolution.

University of lllinois
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FLUOROCARBON PLASMA ETCHING: SELECTIVITY

e Selectivity in fluorocarbon etching relies on polymer deposition
from dissociation of feedstock gases.
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e Compound dielectrics contain oxidants which consume the
polymer, producing thinner polymer layers.

e Thicker polymer on non-dielectrics restrict delivery of ion energy
(lower etching rates). University of lllinois
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CHALLENGES IN TAILORING PLASMAS FOR
SELECTIVE ACTIVATION

e Advanced applications will require extreme selectively by producing
desired plasma chemical reactions and preventing undesirable.

e The ability to tailor the energy distributions of plasma particles is
key to this selectivity.

e Tailored electron energy distributions: Control formation of
radicals and ions; best if also spatially segregated.

e Tailored lon energy distributions: Should be narrow to
differentiate thresholds.

e Tailored synergy between ions and neuftrals: Necessary for
monolayer control of selectivity, deposition, end-point.

e Robust diagnostics to monitor, develop and control processes.

University of lllinois
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TAILORING FLUXES USING MULTIPLE FREQUENCIES

e 2 Frequency RIEs are rapidly becoming the tool of choice for
dielectric etch.

e High frequency is more efficient for heating electrons
and so controls ionization and the magnitude of ion flux

e Low frequency produces little electron heating but
controls ion energy incident on the wafer.
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TAILORING FLUXES USING MULTIPLE FREQUENCIES

e Over a wide parameter space, ion fluxes can be controlled by
high frequency power; ion energy distribution controlled by
low frequency.
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DIFFICULT TO ACHIEVE SELECTIVITY: BROAD IEADS
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e Broad ion energy distributions makes
it difficult to resolve thresholds for
etching; and so selectivity is poor.
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Ion Energy Control — Tailored Waveform through
Frequency and Active Electronics
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NARROW IEDS: CUSTOMIZED BIAS WAVEFORM
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SPEED AND SELECTIVITY: CUSTOM WAVEFORMS

MASK
c A
o
— v
= ‘ L
=
]
0
(=)
£

Si <
Q
(8]
-
Q
=)
wn
[+}]
(14

Time

200V 1500 V 1500/200 V

(Slow, selective) (Fast, non-selective) (Fast, selective)

e 15 mTorr, Ar/C,F; = 75/25,
100 sccm, 10 MHz/10%

e Recipies combining custom waveforms and dynamically
adjusted biases optimize speed and selectivity.
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TAILORING FLUXES THROUGH PULSING

¢ Processing of thin films depends on the synergy between energetic
ions and radical fluxes. Pulsed plasmas which control these
contributions produce unique films not otherwise attainable.
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INSTABILITIES: ELECTRONEGATIVE PLASMAS

e Although rf (10’s MHz) excited plasmas operate in a quasi-dc
basis, instabilities regularly occur. Most plasma processing tools
likely have instabilities which make reproducibility difficult.
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PLASMA DIAGNOSTICS HAVE PLAYED A CRITICAL
ROLE AND ARE MOVING CLOSER TO THE PRODUCT

e Plasma process and equipment design have and will continue to
critically rely on advanced plasma diagnostics.

e Real time control strategies, a requirement for sub-90 nm
processing, must also rely on robust, cost-effective diagnostics.

e The most mature plasma diagnostics are typically too far
removed from critical measurements of activation of surface
processes.

e Non-intrusive diagnostics which provide the state of activating
species impinging on surfaces are required for a complete
picture.

University of lllinois
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On-Water Ion Flux Probe Array

*An on-watfer probe array providing
I.(r,0) 1s used to investigate factors
that affect the plasma stability and
etching uniformity using plasma

etching chemaistries.

ANIMATION SLIDE
See icpp_animate.ppt
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Sub-micron Retarding Field Energy
Analyzer on a Si Substrate

¢« MIEMS fabricated analyzers (0.7~0.8 pm grid
holes on 3.75 um centers) provide inobstrusive
measurements of ion energy distributions
directly on surfaces of interest.
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MTIR-FTIR Wall Probe

> Dt in Cl results from change in the Cl
recombination on the walls due to

deposition of Si-O-Cl products.
> Exposure to SF./O, plasma resets the walls

to a reproducible condition.
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MATERIALS PROCESSING: CHALLENGES

e New materials (metal gates, low-k dielectrics, high-k dielectrics,
SiGe/SOI substrates, porous materials).

e Increasing demands on etch selectivity.

e Shorter development cycle (6 months...)

e Lower thermal budgets (lower temperature processes)

e More controllable knobs to provide reliable real time control.

e Use of plasmas as processing tools (e.g., self assembly) as
opposed to pattern replication.

e Reduced cost of ownership through plasma tools which are
used for multiple processes.

e Improved and more relevant contributions from modeling.

e Ref: J. Cook, T. Mantei, P. Schenborn, P. Ventzek,
D. Manos

University of lllinois
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PLASMAS FOR LIGHTING
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IMPACT OF PLASMA LIGHTING TECHNOLOGIES
e Annual US energy use for lighting is 750 TWH (8.2 quads)

¢ 8.3 % of total energy consumption
e 22% of total electrical energy consumption.

e Plasmas are 59% of lighting energy use (13% of total). There
are 2.6 billion plasma lighting sources in the US.

e Replacing incandescent lamps with plasma sources will
decrease US electrical energy use 5% [20 nuclear power
plants or 1.2 Million barrels of oil/day (10% of imports)].

e Greenhouse gas emission commensurately reduced.

e Improving efficiencies and use of plasma lighting will
enormously impact the worldwide economy and improve the
environment.

o Ref: U.S. Lighting Market Characterization,
Navigant Consulting, 2002

e DOE Annual Energy Outlook 2003 University of lllinois
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HID lamps for illumination and Projection Light Source Technology

Fusion Lighting LCD projector unit
CMH white-light metal halide
- precision arc tube made from alumina
- Na, Tl and rare earth iodides + Hg
- high efficacy and good colour result from high i
vapour pressures s I
- designed to be operated from electronic control gear

Inductively coupled using
single turn coil at 712MHz

non-imaging
optic

L#

iy
Wam

spherical discharge g
= . ‘*P bulb containing highly = 2y
T - . P metal halide reflective
> 'Il'il! o <4 3t i BPerure

20 CMH

phota courtesy GE Li g hiting

HID projection lamps pioneered by Philips

Shaort arc mercury (~200 bar) arc tube — light
produced by atomic lines and maolecular bands.

Materials advances — System Design - Models

Toulouse COST 2002 Ref: David Wharmby



Quartz lamps
State of the art

» Ultra-high-pressure mercury
—quartz arctube
—mercury + bromine dose
—200-240 bar operating pressure
-1.3—-1.5 mm arcgap
—8500 K color temperature
—excellent lumen maintenance
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T B I amnaannc
e i t
S U .
e Fischer, US Patent
5,497,049 (1996)

1.3-1.5 mm

—minimal color separation and color shift over life

—1000-2000 hour life

—100-150 watts (6000—10000 lumens)

 Limitations and shortcomings
—spectrum is deficient in red
» color efficiency ~70 percent
—cannot scale up wattage
* without shortening life
—cannot scale down arcgap
« without reducing efficacy

High Mercury Pressure for High Color Efficiency

045 T -

—2000r. Color Efficiency:
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Monch, Fischér, and Derra

Ref: T. Sommerer, GE R&D Center



Material transport processes

Quartz metal halide lamp

ELECTRODE BASE ~800°C

|

ELECTRODE TIP 2700-3000°C

|

silica removal; silicon suboxide
formation; silicon dissolution in
tungsten tip

TV

.'

P
':
>

~

tungsten supersaturation at wall:
deposition as film and/or
nucleation and crystal growth

tungsten, evaporation from tip — |

tungsten-oxy-halide
evaporation, and transport

metal oxide formation,
iodine liberation, mercury
iodide formation

CONDENSED
METAL HALIDE

|

(7

thorium metal pool equilibrium
with thorium iodide vapor

HOT SPOT TEMPERATURE ~950°C
crystallization of vitreous silica

/

(limits lamp life)

NATURAL CONVECTION:
5000 K ARC CENTER, ~1 CM FROM
~1100 K WALL (~CM/S, ~FEW ATM)

sodium ion diffusion through
wall; photoneutralization and

evaporation at outer surface

COLD SPOT TEMPERATURE ~800°C
(LAMP EFFICIENCY ~ CST)

Ref: T. Sommerer, GE R&D Center



Light Source Technology
Electrodeless — pwave and RF sources

e Sulphur discharge — Fusion Lighting e Inductively coupled Rg/Hg lamps
record 170 lumen/microwave W
LP R lasma
S, discharge in gHgp
~36 mm diameter
phosphor coating @_ﬂ:\
bulb with Kr A —_—
and amalgam . ———— | §
contains discharge o % L g
_'_'_'_,,_,_,—o:'—'_'_,_,—o—"' o
R /
re-entrant with
coil inside on = /‘—\ - (
coil support | ,
circuit

254GHz ¢
magnetron teflactor &

Microwave cavity

| N

System design

Toulouse COST 2002 Ref: David Wharmby



LIGHTING: ACCOMPLISHMENTS AND CHALLENGES

o Efficient white sources based on Hg plasmas in fluorescent and
arc lamps; and non-white metal vapor lamps.

e Challenges:

e Highly efficient non-Hg (or Cd, Pb,...) plasma white-light
sources or near UV which match phosphors (rare gases,
excimers, metal halides, molecular radiators)

e Thermodynamics of high pressure plasmas.

e Improving understanding of plasma-surface interactions to
extend lifetimes (cathodes); and glow-to-arc transition.

e Quantum splitting phosphors to improve utilization of UV (2
visible photons from 1 UV reduces US energy use 5-10%).

e Leverage lighting technologies to other application (e.g., UV
sources for water treatment, and vice-versa.

e Radiation driven non-LTE effects in high pressure lamps.

University of lllinois
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Light Source Technology

Dielectric barrier discharge (DBD)

+ Osram Planon lamp
s Xe discharge with UV radiation from Xe,* excimer
« 60% efficiency to UV - then converted to visible with phosphor

Schematic diagram

®Y

:dielectric

transient
microdischarge

+« Osram innovations in electrode
structure and pulse power format
for uniformity.

_ . Ref: David Wharmby
Materials advances — System Design - Models U. Kogelshatz

Toulouse COST 2002



|

GE R400
et et et
y W
100/ 0.001 99.9/0.1 97/3
Ambient 50C 140 C

Ar (75 Torr cold fill) / Hg

Bl F]
5x108-5x10"" cm-
0-450 ns

ICPP04_30

MODELING ADVANCES
ADDRESS TECHNOLOGY
DEVELOPMENT

e The pressure of (hot)
HIDs is many atm.

o After turn off, the tube
must cool to reduce the
metal density (increase
E/N) so that the available
voltage can re-ignite the

lamp.
e Lamp designs are often
..al driven by startup
d considerations.
7/3 .
220C e Electron density

ANIMATION SLIDE
CLICK FIGURES-AVI FILES IN SAME DIRECTORY
See icpp_animate.ppt
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ATMOSPHERIC PRESSURE PLASMAS
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ATMOSPHERIC PRESSURE PLASMAS

e Atmospheric Pressure Plasmas
(APP) have had tremendous
technological impact

e High power lasers (e.g.,
Excimer lasers)

Lighting Sources (e.g., HID
lamps)

e Ozone generators

Modification of surfaces

e Toxic gas abatement

ozone generator

Ref: U. Kogelshatz

University of lllinois
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OPPORTUNITIES: ATMOSPHERIC PRESSURE PLASMAS
THE CHALLENGE

e APP’s provide the potential to selectively generate activated
species (radicals, ions and photons) for modification and
cleaning of surfaces at low cost.

e Most (many) industrial processes performed with liquid solvents
could in principle be performed with APP generated radicals.

e The environmental impact of eliminating liquid solvents for
cleaning of parts, removal of paint, functionalizing or sterilizing
surfaces would be immense.

e Advanced concepts include improvement of combustion
processes, chemical and biological remediation, sterilization,
microplasma devices, control of aeronautical flows.

e The potential for APPs to perform “high value” manufacturing is
literally untapped.

Ref: B. Ganguly University of lllinois
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ATMOSPHERIC PRESSURE PLASMAS
FOR MATERIAL AND SURFACE PROCESSING:
COMMODITY TO HIGH VALUE

ICPP04_34



PLASMA SURFACE MODIFICATION OF POLYMERS

& CICEIELGESEN o To improve wetting and adhesion of
ASgeaT B3 polymers atmospheric plasmas are used

to generate gas-phase radicals to

functionalize their surfaces.
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'% 0. A humidity 9% (vol). o,

s Hydrophobic
S 60 l
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5 Hydrophilic
__3;;35 40 - t 3
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e Polyethylene, Humid-air
e Akishev, Plasmas Polym. 7, 261 (2002).

« M. Strobel, 3M
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POLYMER TREATMENT O
PLASMA TOOL : |

GROUNDED | FEED ROLL
ELECTRODE :
e Web based corona plasmas
PLASMA
treated sheet polymers for A
i POWERED
|mprc_>ved _surface POWE
functionality. ELECTRODE
{ —~ )HIGH—VOLTAGE
COLLECTOR POWER SUPPLY
ROLL

® TYPICAL PROCESS CONDITIONS:
Web speed : 10 - 200 m/min
Residence time :afews
Energy deposition : 0.1 - 1.0 J cm-2
Applied voltage  : 10-20 kV at a few 10s kHz

Gas gap :afew mm

Tantec Inc. University of lllinois
Optical and Discharge Physics
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FUNCTIONALIZATION OF POLYPROPYLENE

e Control of surface energy by plasma treatment results from
functionalization with hydrophilic groups.

e Carbonyl (-C=0) e Alcohols (C-OH)
e Peroxy (-C-0-0) e Acids ((OH)C=0)

e Functionalization depends on radical fluxes and process
parameters [gas mix, energy deposition, relative humidity (RH)].

15 | 3
3

«? <O> g
& ~-. c
o ~a_ ~ (@)
o 10 A 12%C %
‘é 03 g _,GC: 2
Z ™~ o
: ¢
9 5 | <OH> - 1 ™ ) 1 i
5 ° g
v 3

0 : 0 0 '

1 10 1 10 100
RH (%) RH (%)
e Air, corona plasma, 300 K, 1 atm University of lllinois
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THE ROLE OF PLASMAS IN BIOSCIENCE

e Plasmas, to date, have played
important but limited roles in
bioscience.

e Plasma sterilization

e Plasma source ion .
implantation for hardening
hip and knee replacements. J
P '
e Modification of surfaces for _
biocompatibility (in vitro and i
in vivo) STERRAD® 200
ADVANCED STERILIZATION PRODUCTS®
e Artificial skin = fohmonfohmeon compeny
o The potential for use of e Low pressure rf H,0, plasma
“commodity” plasmas for (www.sterrad.com)

biocompatibility is untapped.

University of lllinois
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s L Plasma Processes
for Cell Adhesion

(spectroscopy

i

é
%:messur‘e gauge 4-/1
0 - 1000 mTorr

pump p—

INHIBITION

PLASMA CL g

PROMOTION

Grafted N-groups
-COOH functional coatings

PEO-like
coatings

D »
,__Ppattern

MICROSTRUCTURED SURFACES
adhesive zones/ non fouling zones

Ref: P. Favia



PE-CVD PEO-like COATINGS
XPS MEASUREMENTS

CO = Cc-C/C-H

C1 = C-O -> non fouling
CH;0-(CH,CH,0);-CH, 100+ PEO Cc2 = C=0

structure | c3 = COOR

TEGDME monomer 32 ,
" retention
= 7 Co
5 <—
o
[«
g
S 501
"PEO” <
CHARACTER S
w
X -
8
C2 -
< / 7 v T T C3| T T
A 0 10 20 30
289.5 288 2865 285 RF Power (W)

Binding Energy (eV)

Ref: P. Favia



i NCTC2544 human keratinocytes
- onto microstructured PS

bar= 84 pm

PS/PEQ-like N-groups/PEQO-like

DEGDME/Ar NH, TTE

Ref: P. Favia



ATMOSPHERIC PRESSURE PLASMAS: THE CHALLENGE

e Controlling functional groups on polymers through fundamental
understanding of plasma-solid interactions will enable
engineering large area biocompatible surfaces.

e 10,000 square miles of polymer sheets are treated annually with
atmospheric pressure plasmas to achieve specific functionality.
Cost: < $0.05 /m?

e Low pressure plasma processing technologies produce
biocompatible polymers having similar functionalities. Cost: up
to $100’s /cm? ($1000’s/cm? for artificial skin)

e Can commodity, atmospheric pressure processing technology
be leveraged to produce high value biocompatible films at low
cost? The impact on health care would be immeasurable.

> I >
$0.05/m?2 ? $1000/cm?

University of lllinois
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CAN COMMODITY PROCESSES
PRODUCE HIGH VALUE MATERIALS?

" Untreated PP

|
Line of : -
Sy;,';';gtry Dielectric
Dlelectrlc
C Ground/
‘|‘ B|ased
2 mm Cathode
l Polymer
)
AW
Ground
3.5 um Polymer Strands
-

e Demonstration: corona-rod, 2 mm
gap, 15 kV pulse, N,/O,/H,0 =79.5/
19.5/1,1 atm

e Tantec, Inc.

University of lllinois
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PLASMA PROPERTIES: PULSED NEGATIVE CORONA | Animation Slide

e Development of plasma streamer produces large electric field,
electron sources, ionization and radical production.

p e [Cm_33_1] [8] (em™ O (log cm'3)
E/M (log Td) Positive [log) [10'2- 10" (log)] [10™-10"]

[30 - 3000] (10" - 10 /

ANIMATION SLIDE
See icpp_animate.ppt

-1 mm -1 mm -1 mm - 1 mm-—Pp»>
e E/N  Net lonization e [e] 6)

e N,/O,/H,0=79.5/19.5/1, 1 atm,

ICPPO4_41 15 KV, 0-15 ns MIN BN ENEE VMAX



SURFACE INTERACTIONS: O RADICALS, IONS

10°- 1012  5x101°- 5x1013 +15 kV cycle
10 um
A
1.4 ns 1.5 ns
w w * Positive lons (10° — 5x10"° cm-3)
1x1011- 1x1014 e lon penetration is ultimately

| | controlled by surface charging.
° [0] cm-3

ANIMATION SLIDE
See icpp_animate.ppt

¢ O radicals penetrate deeper into
the features.

e 15 kV, 1 atm,
N,/O,/H,0=79.5/19.5/1 I FI EE University of lllinois
ICPP04_43 MIN (log scale) MAX Optical and Discharge Physics




FUNCTIONAL GROUP DENSITIES ON POLYPROPYLENE

PP --> ALKYL --> ALKOXY, PEROXY
A C \|/
CARBONYL , ALCOHOL
v .
B
1.8 X Y %0 5 10 15
m
4
& A -
' Carbonyl
53 M
= Alcohol
o~ 5 10 15
um

e 1 atm, N,/O,/H,0=79.5/19.5/1, University of lllinois
ICPPO4 44 1.5 ms, 10 kHz. Optical and Discharge Physics



ATMOSPHERIC PRESSURE PLASMAS:
SURFACES, PHOTONS, FLOW

ICPP04_45



APPJ-based Decontamination

Pu Contaminated Decon Benefits:
Surface * Innocuous feed gases (He,

Cartridge CFy, O))
Filters * Dry - no secondary waste

stream

Vacuum Plasma Je  Actinides potentially

Cleaner

recoverable
* Endpoint detection
Rolling / possible

Seal

« Decontamination Concept = Volume Reduction

* Energetic plasma electrons dissociate CF, forming F atoms

* Oxygen reacts with CF, molecules to prevent recombination

* Atomic Fluorine etches contamination: Pu(s) + 6F(g) = PuF,(g)

* Volatile byproducts (e.g., PuF;) captured in adsorbent and HEPA filters
+ “Rolling Seal” allows motion while eliminating spread of contamination

Los Alamos National Laboratory Ref: L. Rosocha



Transient Plasma ignition experiments

Transient (left)
vs. Arc (Right)

OC Power Trigger
Supply
Pulze Genergtor T

High “ottage O .
Pawer Supply

Ozcilloscope

e
w2 (= W [ &
........ [

Pressure
Transducer

] <
i
|

“Wacuum pump

—l—! Gas outlet

{7 Guage
Ref: M. Gundersen

PulsedPower

Vol




MICRODISCHARGES: MEMS FABRICATION

| -
[ LLE L L LT Y 1 I
(JL L L L] .

e Microdischarges leverage pd scaling to operate at atmospheric
pressure with sizes <10s um (pd =6 Torr-cm, p=1 atm, d =65 um)

:\/:

Inverted Pyramidal Elctrode ssssssssss

L A B N BN NN NN
LA A B 2 B R B N

(30 um)? 10 X 11 arrays 1200 Torr Ne

e Using MEMS techniques, arrays of addressable MDs can be
fabricated for UV generation, displays, “coherent” photonics
with “incoherent” sources.

University of lllinois
Ref: J. G. Eden, UIUC Optical and Discharge Physics
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In-situ H, Generation for Small Scale (i.e. Low Power) Fuel
Cells Using a Microhollow Cathode Discharge

100-200 pm
_}E D :h(_ CHﬂ'lOde ] Plasma on Plasma off

" Anode '

Partial Pressure (Torr)

I T T T T T T T T T T
0 20 40 60 80 100 120 140
Time (min)

e High throughput is facilitated by
microplasma arrays

e Ref: Kurt Becker




CONTROL OF AERONAUTICAL FLOWS USING PLASMAS

e Charged particles accelerated in electric fields can produce
advective motion of gases through momentum transfer.

Force
Plasrlzjﬁ” e L8 L =q Z Zini —n, E = pE = SOEV B
XN\ NN - Volume .
o e The flight characteristics of airfoils
v . are sensitive functions of the

&) ——p Fiow &y

“adherence” of the boundary layer.

S TSSSSL,

- o Strategically generated plasmas on
e s wings can beneficially and
controllably affect lift and steering.
e Example of dielectric
barrier discharges for flow
control

. University of lllinois
ICPPO4_47 Ref: R. Roth Optical and Discharge Physics



CONTROL OF AERONAUTICAL FLOWS USING PLASMAS

(air-side) wd F"’V"'ﬁ Kapton filrm

Airfoil

Angle of
Attack

electrodes .
x/c = location

20

Plasma Off
40

Plasma On
60

Ref: R. Roth, Phys. Plasma 10, 2117 (2003) Ref: T. Corke, AIAA 2004-2127

e A dielectric barrier discharge on
the surface of an airfoil prevents

separation of the boundary layer. University of lllinois
Optical and Discharge Physics
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KEY TO PROGRESS IS LEVERAGING TECHNOLOGIES.:
MICRODISCHARGE ACTUATORS

(=0 lonDensity [6x 107 em®] =0

Potentid [-120to 0V

Anocde

Dielectric _ Dielectric &8

Cathode

150 micron

r=0 E-beamlonization T °

E-Field [25 kV/om]
1.3x 10* ems™! pE—-

Anode

Dielectric

Dielectric

150 micron

ICPP04_50

e Microdischarges were
developed as photon and
radial sources.

e Leveraging these
technologies enable
advances in other areas.

e Arrays of micro-
discharges may enable
control of flow
characteristics in
“programmable” fashion.

e 600 Torr Ne, 180 V

University of lllinois
Optical and Discharge Physics



/i 2 i
FIQW Field [10 mys]

s o I
/// e

Flow Field [10 rys]

Anode

GAS PUMPING USING
MICRODISCHARGS

e lon pumping is efficient
due to ability to
produce large cw ion

current densities.

Dielectric

Cathode

ﬁ ’ 1
150 miaon

150 micron

ICPP04_51

e Flexible arrays enable
large areas.

e 600 Torr Ne, 180 V

University of lllinois
Optical and Discharge Physics



PLASMAS IN NANOSCIENCE

ICPP04_52



THE ROLE OF PLASMAS IN NANOSCIENCE

e Plasma science has been absolutely critical to the development
of conventional microelectronics structures.

e What will the role of plasma science be in facilitating these
advances in truly nanoscale science and technology?

e Atomic layer processing (etch and deposition)
e Plasma aided lithography (trimming)

e Selective activation or functionalization of materials on
molecular scales (inanimate and living)

o Self- and directed-assembly

e Commodity production of nanostructures and nano-
particles.

e Plasma physics laboratories

University of lllinois
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SELECTIVE, ALIGNED PLASMA
GROWTH OF CARBON NANOTUBES

e Aligned CNT growth can be obtained
in a low pressure rf and dc plasmas
using different feedstocks.

e Catalyst choice and configuration may
dominate.

DC Plasma CVD

Ref: B. Cruden

Cruden et al., J Appl Phys, 12, 363 (2001).

DC Plasma (C,H,/NH,)



RF

Voltage

Current

T.C.

MB
I |
He/H./CH, ﬁ
EI |
8
L _ =
e D
Substrate & 5
Yy

[
LGJ Pump

Ref: U. Kortshagen, U. Minnesota

Atmospheric Pressure
Plasmas for Carbon
l Nanotube Deposition

H,:CH,=60:30, 352 V-1.51 A
4 mm, 15 min (3)

-

v AP ; ] ';.--‘,} * 'y . i/
- - " . L0 Pl T -
Ref: U. Kortshagen \ Y 20 : - £ ol 2

)
Tt T o .
| | I 1 I | | | | |

) |
S-4700 5.0kV 4.8mm x50.0k SE(M) 10/18/03 1.00um



[ Microplasmas as Micro-reactors: Nanostructures J

1.0x10°

Plasma

Capillary tube

Ar + SiH a7 ¢100 pm :3:3:3:3:3£3;3 ® oo © o

CATHODE ANODE 5.0x107 )

e Short residence time of
reactants in plasma zone |,

1

of microdischarge
enables controlled 05
fabrication of fluorescent
Si nanoparticles.

Typical operating conditions g’ 03
»100 sccm Ar in air 8 02}
> Viiasma=450 VDC, 1,,s,,=10.0 mA o 2 |
>d, =180 um, L=2 mm e K.P. Giapis,

Caltech 0.0

US Patent No. 6,700,329 — Issued 3/2/04
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MICRODISCHARGES: MINIATURE PLASMA PHYSICS LABS

e Following microdischarges scaling to > 10s atm, [e] > 10" cm-3, d <
0.1 um provides a cw source of quantum mechanical plasma(?)

105 1067102 1

& E E Meso-Exotic Area Exotic Area
8 < = statistical /

104+ 10°1T 10%E mechanical

—
o
=
=J

I

—
o
tn
!
|

Plasma frequency
2
|
Debyei length
;

!
Electron density
P
]15

(Nano

-Sam

102 103 10%4

10134
Conventional

10"+ 1021 107 | | ] |
102 101 100 10-1 102 1073 104 10
Size (mm)
e Ref: Annual Progress Report, “Generation of Micro-Scale Reactive Plasmas and
Development of Their New Applications” K. Tachibana, Project Leader, March 2004

Bl

University of lllinois
Optical and Discharge Physics
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CONCLUDING REMARKS

e Low temperature, technological plasmas address an array of high
technology and commodity applications.

e The widest use of low temperature plasmas is production of
extremely high value materials (e.g., microelectronics) and low
values materials (e.g., polymer functionalization).

e The key to advancing the state of the art is improving
fundamental understanding while leveraging low cost processes
for high value materials. For example,

e Plasma modified polymers for artificial skin
e Microplasma produced nanoparticles

University of lllinois
ICPP04_56 Optical and Discharge Physics



