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AGENDA

• Applications of Low Temperature Plasmas

• What challenges and opportunities lie ahead for plasma 
technologies?

•Materials Processing
• Lighting
•Atmospheric Pressure Plasmas
•Bioscience
•Nanoscience

• Concluding remarks
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DEFINITION OF TECHNOLOGICAL PLASMAS
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• Technological plasmas are a power transfer media.

• Electrons transfer power from the "wall plug" to internal modes of 
atoms / molecules to make “benign” species into “reactive” species.

• Once activated, their physical or chemical potential may be used to 
make products (add or remove materials, photons…)
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• Displays

• Materials 
Processing

COLLISIONAL LOW 
TEMPERATURE PLASMAS

• Lighting

• Thrusters

• Spray Coatings
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PLASMA MATERIALS PROCESSING FOR 
MICROELECTRONICS
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PLASMA MATERIALS PROCESSING FOR 
MICROELECTRONICS

• The fabrication of conventional microelectronics has met and 
bested extreme challenges as the nm scale is approached and 
exceeded.

• Plasma science has played a critical role in virtually all aspects 
of meeting these challenges

• Physical Vapor Deposition
• Plasma Enhanced Chemical Vapor Deposition
• Etching
• Cleaning
• Passivation
• Plasma sources of UV radiation for lithography (Hg lamps 

to EUV)



• Plasma etching is at the heart of microelectronics fabrication. 
Advance techniques have produced feature sizes below 
lithography limits. 

• Challenges for etching novel low-k (dielectric) materials for 
interconnect have been met.

PLASMA ETCHING-TRANSISTORS, INTERCONNECT

• Ref: F. Huang, P. Ventzek
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SOPHISTICATED PLASMA TOOLS

• Ref: Ashok Das
• AMAT Ionized Metal PVD

• AMAT-Komatsu PECVD 
for flat panel displays
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PLASMA PROPERTIES: ICPs IN Ar/c-C4F8/CO/O2

• Complex multi-component gas 
mixtures are used to optimize 
the flux of reactants to the 
substrate.

• Dozens of radicals and ions 
may be generated by 
dissociation and ionization of 
the feedstock gases. 

• Ar/c-C4F8/CO/O2 = 60/5/25/10, 
10 mTorr, 600 W ICP, 13.56 
MHz, 20 sccm.
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IEADs TO 
SUBSTRATE: MERIES 

IN Ar/C4F8 /O2

• 40 mTorr, 2000 W MERIE, 215 
sccm, Ar/C4F8 /O2 = 200/10/5, 
100 G

• Acceleration of ions into 
the wafer by applied bias 
generates fluxes of a wide 
variety of ions.

• These Ion Energy and 
Angular Distributions 
(IEADs) activate etching 
processes. 
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SELECTIVITY IN MICROELECTRONICS FABRICATION
• Fabricating complex microelectronic structures made of 

different materials requires extreme selectivity in, for example, 
etching Si with respect to SiO2.

• Complex features are fabricated by selectively removing one 
material but not another with near monolayer resolution.

50 nm

• AMD 90 nm Athlon 64 
• Ref: G. Timp

ICPP04_13



University of Illinois
Optical and Discharge Physics

FLUOROCARBON PLASMA ETCHING: SELECTIVITY

• Selectivity in fluorocarbon etching relies on polymer deposition
from dissociation of feedstock gases.

• Compound dielectrics contain oxidants which consume the 
polymer, producing thinner polymer layers.

• Thicker polymer on non-dielectrics restrict delivery of ion energy 
(lower etching rates).

SiFn

SiSiO2

COFn, SiFn

CFx
CFx

CFn, M+
CFn, M+

e + Ar/C4F8            CFn, M+

Polymer
Polymer

• G. Oerhlein, et al., JVSTA 17, 26 (1999)ICPP04_14
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CHALLENGES IN TAILORING PLASMAS FOR 
SELECTIVE ACTIVATION
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• Advanced applications will require extreme selectively by producing  
desired plasma chemical reactions and preventing undesirable. 

• The ability to tailor the energy distributions of plasma particles is 
key to this selectivity.

• Tailored electron energy distributions: Control formation of 
radicals and ions; best if also spatially segregated.

• Tailored Ion energy distributions: Should be narrow to 
differentiate thresholds.

• Tailored synergy between ions and neutrals: Necessary for 
monolayer control of selectivity, deposition, end-point.

• Robust diagnostics to monitor, develop and control processes.



Model results from HPEM
Ref: K. Seaward, S. Samakawa
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TAILORING f(ε) BY FREQUENCY
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• Plasma tools for multiple processes or 
recipes (different chemistries) require 
control of electron energy distribution 
for optimum generation of precursors.  

• [e], ICP, 10 mTorr, Ar/Cl2 = 70/30.  

• f(ε) 50 MHz 

• f(ε) 5 MHz 
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• 2 Frequency RIEs are rapidly becoming the tool of choice for 
dielectric etch.

• High frequency is more efficient for heating electrons 
and so controls ionization and the magnitude of ion flux

• Low frequency produces little electron heating but 
controls ion energy incident on the wafer. 

TAILORING FLUXES USING MULTIPLE FREQUENCIES

ICPP04_17
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• Over a wide parameter space, ion fluxes can be controlled by 
high frequency power; ion energy distribution controlled by 
low frequency.

TAILORING FLUXES USING MULTIPLE FREQUENCIES

• Argon, 10 m Torr
• Boyle, Ellingboe, Turner, PSST 13, 493 (2004) 

• Plasma density, Ion flux

• Ion Energy Distributions

ICPP04_18



• Ar, 40 mTorr, 300 sccm, 500 W 40 
MHz (top), 500 W 5 MHz (bottom), 
100 G

• Broad ion energy distributions makes 
it difficult to resolve thresholds for 
etching; and so selectivity is poor.

DIFFICULT TO ACHIEVE SELECTIVITY: BROAD IEADS
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NARROW IEDS: CUSTOMIZED BIAS WAVEFORM

• Non-sinusoidal biases 
enable control of sheath 
potential, and narrowing of 
the IED. 

• 15 mTorr, 500 W, 200 Vp-p,
Ar/C4F8 = 75/25, 100 sccm
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SPEED AND SELECTIVITY: CUSTOM WAVEFORMS 

ANIMATION SLIDE
CLICK ON FIGURES-AVI FILES IN SAME DIRECTORY

See icpp_animate.ppt

200 V
(Slow, selective)

MASK

SiO2

Si

• 15 mTorr, Ar/C4F8 = 75/25, 
100 sccm, 10 MHz/10%

• Recipies combining custom waveforms and dynamically 
adjusted biases optimize speed and selectivity.

1500 V
(Fast, non-selective)

1500/200 V
(Fast, selective)
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• Model results from GLOBAL_KIN
Ref: K. Seaward
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TAILORING FLUXES THROUGH PULSING
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• Processing of thin films depends on the synergy between energetic 
ions and radical fluxes.  Pulsed plasmas which control these 
contributions produce unique films not otherwise attainable.  

• Pulsed ICP Ar/C4F8=70/30, 15 mTorr    • Deposition of low-k 
fluorocarbon film from 
perfluoroallyl benzene [L. 
Han, JVSTB 18, 799 (2000)]
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INSTABILITIES: ELECTRONEGATIVE PLASMAS
• Although rf (10’s MHz) excited plasmas operate in a quasi-dc 

basis, instabilities regularly occur.  Most plasma processing tools 
likely have instabilities which make reproducibility difficult.

• Ionization instability in inductively 
coupled Ar/SF6 plasma for etching.

• Chabert, Lichtenberg, Lieberman, 
Marakhtanov PSST 10, 478 (2001)
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PLASMA DIAGNOSTICS HAVE PLAYED A CRITICAL 
ROLE AND ARE MOVING CLOSER TO THE PRODUCT

• Plasma process and equipment design have and will continue to 
critically rely on advanced plasma diagnostics.

• Real time control strategies, a requirement for sub-90 nm 
processing, must also rely on robust, cost-effective diagnostics.

• The most mature plasma diagnostics are typically too far 
removed from critical measurements of activation of surface 
processes.

• Non-intrusive diagnostics which provide the state of activating 
species impinging on surfaces are required for a complete 
picture.



Ref: E. Aydil

80 mTorr SF6, 200 W

ANIMATION SLIDE
See icpp_animate.ppt







• New materials (metal gates, low-k dielectrics, high-k dielectrics, 
SiGe/SOI substrates, porous materials).

• Increasing demands on etch selectivity.
• Shorter development cycle (6 months…)
• Lower thermal budgets (lower temperature processes)
• More controllable knobs to provide reliable real time control.
• Use of plasmas as processing tools (e.g., self assembly) as 

opposed to pattern replication.
• Reduced cost of ownership through plasma tools which are 

used for multiple processes.
• Improved and more relevant contributions from modeling.

MATERIALS PROCESSING: CHALLENGES
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• Ref: J. Cook, T. Mantei, P. Schenborn, P. Ventzek, 
D. Manos
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PLASMAS FOR LIGHTING
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IMPACT OF PLASMA LIGHTING TECHNOLOGIES
• Annual US energy use for lighting is 750 TWH (8.2 quads) 

• 8.3 % of total energy consumption
• 22% of total electrical energy consumption.

• Plasmas are 59% of lighting energy use (13% of total). There 
are 2.6 billion plasma lighting sources in the US.

• Replacing incandescent lamps with plasma sources will 
decrease US electrical energy use 5% [20 nuclear power 
plants or 1.2 Million barrels of oil/day (10% of imports)].

• Greenhouse gas emission commensurately reduced.

• Improving efficiencies and use of plasma lighting will 
enormously impact the worldwide economy and improve the 
environment.   

• Ref: U.S. Lighting Market Characterization, 
Navigant Consulting, 2002

• DOE Annual Energy Outlook 2003
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LIGHTING: ACCOMPLISHMENTS AND CHALLENGES

• Efficient white sources based on Hg plasmas in fluorescent and 
arc lamps; and non-white metal vapor lamps.

• Challenges:
• Highly efficient non-Hg (or Cd, Pb,…) plasma white-light 

sources or near UV which match phosphors (rare gases, 
excimers, metal halides, molecular radiators)

• Thermodynamics of high pressure plasmas.
• Improving understanding of plasma-surface interactions to 

extend lifetimes (cathodes); and glow-to-arc transition.
• Quantum splitting phosphors to improve utilization of UV (2 

visible photons from 1 UV reduces US energy use 5-10%).
• Leverage lighting technologies to other application (e.g., UV 

sources for water treatment, and vice-versa.
• Radiation driven non-LTE effects in high pressure lamps.
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MODELING ADVANCES 
ADDRESS TECHNOLOGY

DEVELOPMENT

The pressure of (hot) 
HIDs is many atm. 

After turn off, the tube 
must cool to reduce the 
metal density (increase 
E/N) so that the available 
voltage can re-ignite the 
lamp.

Lamp designs are often 
driven by startup 
considerations.

Electron density 

5 x 108 - 5 x 1011 cm-3

0-450 ns

Ar (75 Torr cold fill) / Hg

100/ 0.001
Ambient

99.9/0.1
50 C

97/3
140 C

7/3
220C

GE R400

ICPP04_30

ANIMATION SLIDE
CLICK FIGURES-AVI FILES IN SAME DIRECTORY

See icpp_animate.ppt
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ATMOSPHERIC PRESSURE PLASMAS



University of Illinois
Optical and Discharge PhysicsICPP04_32

ATMOSPHERIC PRESSURE PLASMAS

• Atmospheric Pressure Plasmas 
(APP) have had tremendous 
technological impact

• High power lasers (e.g., 
Excimer lasers)

• Lighting Sources (e.g., HID 
lamps)

• Ozone generators

• Modification of surfaces

• Toxic gas abatement • Atmospheric pressure DBD 
ozone generator

Ref: U. Kogelshatz
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OPPORTUNITIES: ATMOSPHERIC PRESSURE PLASMAS
THE CHALLENGE

• APP’s provide the potential to selectively generate activated 
species (radicals, ions and photons) for modification and 
cleaning of surfaces at low cost.

• Most (many) industrial processes performed with liquid solvents 
could in principle be performed with APP generated radicals.

• The environmental impact of eliminating liquid solvents for 
cleaning of parts, removal of paint, functionalizing or sterilizing 
surfaces would be immense.

• Advanced concepts include improvement of combustion 
processes, chemical and biological remediation, sterilization, 
microplasma devices, control of aeronautical flows.

• The potential for APPs to perform “high value” manufacturing is 
literally untapped.

Ref: B. Ganguly
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ATMOSPHERIC PRESSURE PLASMAS
FOR MATERIAL AND SURFACE PROCESSING:

COMMODITY TO HIGH VALUE
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PLASMA SURFACE MODIFICATION OF POLYMERS
• To improve wetting and adhesion of 

polymers atmospheric plasmas are used 
to generate gas-phase radicals to 
functionalize their surfaces.

Untreated PP

Plasma Treated PP

• M. Strobel, 3M

ICPP04_35           

Hydrophobic

Hydrophilic

• Polyethylene, Humid-air
• Akishev, Plasmas Polym. 7, 261 (2002).



University of Illinois
Optical and Discharge Physics

POLYMER TREATMENT
PLASMA TOOL

ICPP04_36

• Web based corona plasmas 
treated sheet polymers for 
improved surface 
functionality.

Tantec Inc.
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FUNCTIONALIZATION OF POLYPROPYLENE

• Air, corona plasma, 300 K, 1 atm
ICPP04_37          

• Control of surface energy by plasma treatment results from 
functionalization with hydrophilic groups.

• Carbonyl (-C=O) • Alcohols (C-OH)
• Peroxy (-C-O-O) • Acids ((OH)C=O)

• Functionalization depends on radical fluxes and process 
parameters [gas mix, energy deposition, relative humidity (RH)].
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THE ROLE OF PLASMAS IN BIOSCIENCE

• Plasmas, to date, have played 
important but limited roles in 
bioscience.

• Plasma sterilization

• Plasma source ion 
implantation for hardening 
hip and knee replacements.

• Modification of surfaces for 
biocompatibility (in vitro and 
in vivo)

• Artificial skin

• The potential for use of 
“commodity” plasmas for 
biocompatibility is untapped.

• Low pressure rf H2O2 plasma 
(www.sterrad.com)



Plasma  Processes 
for Cell Adhesion

Ref: P. Favia



Ref: P. Favia
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ATMOSPHERIC PRESSURE PLASMAS:THE CHALLENGE

• Controlling functional groups on polymers through fundamental 
understanding of plasma-solid interactions will enable 
engineering large area biocompatible surfaces.

• 10,000 square miles of polymer sheets are treated annually with 
atmospheric pressure plasmas to achieve specific functionality. 
Cost: < $0.05 /m2

• Low pressure plasma processing technologies produce 
biocompatible polymers having similar functionalities. Cost: up 
to $100’s /cm2 ($1000’s/cm2 for artificial skin)

• Can commodity, atmospheric pressure processing technology 
be leveraged to produce high value biocompatible films at low 
cost?  The impact on health care would be immeasurable.

$0.05/m2 $1000/cm2?
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CAN COMMODITY PROCESSES 
PRODUCE HIGH VALUE MATERIALS?

• Demonstration: corona-rod, 2 mm 
gap, 15 kV pulse, N2/O2/H2O =79.5 / 
19.5 / 1, 1 atm • Tantec, Inc.

ICPP04_40



PLASMA PROPERTIES: PULSED NEGATIVE CORONA

• Development of plasma streamer produces large electric field, 
electron sources, ionization and radical production. 

• N2/O2/H2O =79.5 / 19.5 / 1, 1 atm,
15 kV, 0-15 ns

• E/N

MIN MAX 

Animation Slide

• Net Ionization

ICPP04_41

• [e] • O

ANIMATION SLIDE
See icpp_animate.ppt
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• Ion penetration is ultimately 
controlled by surface charging.

• O radicals penetrate deeper into 
the features.

SURFACE INTERACTIONS: O RADICALS, IONS

• 15 kV, 1 atm, 
N2/O2/H2O=79.5/19.5/1

1x1011- 1x1014

MIN (log scale)  MAX

• [O]  cm-3

109- 1012 5x1010- 5x1013

1.5 ns1.4 ns

10 µm

1.65 ns 4 ns 7 ns

10 µm

+15 kV cycle

• Positive Ions (109 – 5x1013 cm-3)

ICPP04_43

ANIMATION SLIDE
See icpp_animate.ppt



University of Illinois
Optical and Discharge Physics

FUNCTIONAL GROUP DENSITIES ON POLYPROPYLENE

• 1 atm,  N2/O2/H2O=79.5/19.5/1, 
1.5 ms, 10 kHz.

ICPP04_44
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ATMOSPHERIC PRESSURE PLASMAS:
SURFACES, PHOTONS, FLOW



Ref: L. Rosocha



Ref: M. Gundersen
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MICRODISCHARGES: MEMS FABRICATION
• Microdischarges leverage pd scaling to operate at atmospheric 

pressure with sizes < 10s µm  (pd = 6 Torr-cm, p=1 atm, d = 65  µm) 

Ref: J. G. Eden, UIUC

• Using MEMS techniques, arrays of addressable MDs can be 
fabricated for UV generation, displays, “coherent” photonics 
with “incoherent” sources.  

Inverted Pyramidal Elctrode

(30 µm)2 10 X 11 arrays 1200 Torr Ne



In-situ H2 Generation for Small Scale (i.e. Low Power) Fuel 
Cells Using a Microhollow Cathode Discharge
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• High throughput is facilitated by 
microplasma arrays

• Ref: Kurt Becker
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CONTROL OF AERONAUTICAL  FLOWS USING PLASMAS

• The flight characteristics of airfoils 
are sensitive functions of the 
“adherence” of the boundary layer.

• Strategically generated plasmas on 
wings can beneficially and 
controllably affect lift and steering. 

Ref: R. Roth

• Example of dielectric 
barrier discharges for flow 
control

• Charged particles accelerated in electric fields can produce 
advective motion of gases through momentum transfer.
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CONTROL OF AERONAUTICAL  FLOWS USING PLASMAS

• A dielectric barrier discharge on 
the surface of an airfoil prevents 
separation of the boundary layer.

Ref: R. Roth, Phys. Plasma 10, 2117 (2003) Ref: T. Corke, AIAA 2004-2127
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KEY TO PROGRESS IS LEVERAGING TECHNOLOGIES:
MICRODISCHARGE ACTUATORS

• Microdischarges were 
developed as photon and 
radial sources. 

• Leveraging these 
technologies enable 
advances in other areas.

• Arrays of micro-
discharges may enable 
control of flow 
characteristics in 
“programmable” fashion.

• 600 Torr Ne, 180 V 
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GAS PUMPING USING 
MICRODISCHARGS

• Ion pumping is efficient 
due to ability to 
produce large cw ion 
current densities.

• Flexible arrays enable 
large areas. 

• 600 Torr Ne, 180 V

ICPP04_51
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PLASMAS IN NANOSCIENCE



University of Illinois
Optical and Discharge PhysicsICPP04_53

THE ROLE OF PLASMAS IN NANOSCIENCE

• Plasma science has been absolutely critical to the development 
of conventional microelectronics structures. 

• What will the role of plasma science be in facilitating these 
advances in truly nanoscale science and technology?

• Atomic layer processing (etch and deposition)
• Plasma aided lithography (trimming)
• Selective activation or functionalization of materials on 

molecular scales (inanimate and living)
• Self- and directed-assembly
• Commodity production of nanostructures and nano-

particles.
• Plasma physics laboratories



Cruden et al., J Appl Phys, 12, 363 (2001).

SELECTIVE, ALIGNED PLASMA 
GROWTH OF CARBON NANOTUBES

DC Plasma CVD

DC Plasma (C2H2/NH3) 

RF Plasma (C2H4/NH3) 

Ref: B. Cruden

• Aligned CNT growth can be obtained 
in a low pressure rf and dc plasmas 
using different feedstocks.

• Catalyst choice and configuration may 
dominate.



Ref: U. Kortshagen, U. Minnesota
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Ar + SiH4

Microplasmas as Micro-reactors: Nanostructures

US Patent No. 6,700,329 – Issued 3/2/04

Typical operating conditions
100 sccm Ar in air
Vplasma=450 VDC, Iplasma=10.0 mA
dhole=180 µm, L=2 mm • K. P. Giapis,    

Caltech

• Short residence time of 
reactants in plasma zone 
of microdischarge 
enables controlled 
fabrication of fluorescent 
Si nanoparticles.

ICPP04_54
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MICRODISCHARGES: MINIATURE PLASMA PHYSICS LABS
• Following microdischarges scaling to ≥ 10s atm, [e] > 1019 cm-3, d < 

0.1 µm  provides a cw source of quantum mechanical plasma(?)

• Ref: Annual Progress Report, “Generation of Micro-Scale Reactive Plasmas and 
Development of Their New Applications” K. Tachibana, Project Leader, March 2004



University of Illinois
Optical and Discharge PhysicsICPP04_56

CONCLUDING REMARKS

• Low temperature, technological plasmas address an array of high 
technology and commodity applications.

• The widest use of low temperature plasmas is production of 
extremely high value materials (e.g., microelectronics) and low 
values materials (e.g., polymer functionalization).

• The key to advancing the state of the art is improving 
fundamental understanding while leveraging low cost processes 
for high value materials. For example,

• Plasma modified polymers for artificial skin
• Microplasma produced nanoparticles


