
UNIVERSITY OF ILLINOIS
OPTICAL AND DISCHARGE PHYSICS

AN INTEGRATED PLASMA EQUIPMENT-
FEATURE SCALE MODEL FOR

IONIZED METAL PHYSICAL VAPOR DEPOSITION+

JLU_ICOPS00_00

Junqing Lu* and Mark J. Kushner**

*Department of Mechanical and Industrial Engineering

**Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

June 2000

+Supported by SRC, TAZ, and NSF



UNIVERSITY OF ILLINOIS
OPTICAL AND DISCHARGE PHYSICS

AGENDA
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• Introduction to IMPVD

• Description of the model and the sputter algorithm

• Metal densities, electron temperature and density in Cu IMPVD

• Diffusion model for profile simulation

• Trench filling at different pressures, magnetron and ICP power

• Conclusions
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IONIZED METAL PHYSICAL VAPOR DEPOSITION (IMPVD)
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• Ionized Metal PVD (IMPVD) is being developed to fill deep vias and trenches for 
  interconnect, and for deposition of seed layers and diffusion barriers.

• In IMPVD, a second plasma source is used to ionize a large fraction of the
  the sputtered metal atoms prior to reaching the substrate. 

• Typical Conditions:
 
    • 10’s mTorr 
       Ar buffer

    • 100s V bias on 
       target

    • 100s W - a few 
       kW ICP

    • 10s V bias on 
       substrate
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DEPOSITION PROFILES: ATOMS vs IONS
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• Ions are able to fill deep trenches because their angular distributions are 
  narrowed by the rf bias.
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 COMPUTATIONAL PLATFORM
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Hybrid Plasma Equipment Model (HPEM)

Source terms Flux to wafer

Plasma Chemistry Monte Carlo Simulation
(PCMCS)

Monte Carlo Feature Profile Model (MCFPM)

Angular and     energy distributions



UNIVERSITY OF ILLINOIS
OPTICAL AND DISCHARGE PHYSICS

FEATURES OF SPUTTER MODEL
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• Ion energy-dependent yield* for sputtered atoms.

• The effective yield of 1 for the reflected neutrals.

• Ion energy-dependent kinetic energy 

   • Sputtered atoms: Cascade distribution

   • Reflected neutrals: TRIM** and MD***

• Cosine distribution in angle for sputtered 
  and reflected atoms emitted from target.

• Momentum and energy transfer from sputtered and 
  reflected atoms to background gas (sputter heating).

• Electron impact ionization for in-flight sputtered and reflected neutrals.

• Source terms for thermalized sputter species and gas heating.

   *Masunami et al., At. Data Nucl. Data Tables 31, 1 (1984) .
 **D. Ruzic, UIUC.
***Kress et al., J. Vac. Sci. Technol. A 17, 2819 (1999)
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Cu IMPVD: METAL DENSITIES
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• Reactor is based on *Cheng et al.

• Operating conditions:

• 40 mTorr Ar

• 1.0 kW ICP

• 0.3 kW magnetron

• -25 V dc bias on substrate

• Cu peaks below the target 
  since most of the sputtered 
  Cu atoms are thermalized 
  a few cm below the target.

• Cu+ peaks at the center due 
  to the depletion of ions by the 
  biased target and the substrate.

*Cheng, Rossnagel, and Ruzic, JVST 
  13(2), 1995, p. 203.
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Cu IMPVD: ELECTRON TEMPERATURE AND DENSITY
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• The electron temperature is > 3 eV throughout the reactor.

• The large Te near the coils is due to the large ICP power deposition in this region.

• The electron density peaks off center due to the magnetron effect and off-axis 
  ionization by ICP power.
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MONTE CARLO FEATURE PROFILE MODEL (MCFPM)
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• The MCFPM obtains the etch and 
  deposition profile using ion and neutral 
  distributions from the PCMCS.

• Surface processes are implemented using 
  a chemical reaction mechanism:

    • Deposition:  Cu(g) + Si(s) --> Cu(s) + Si(s)

    • Resputtering: Ar+(g) + Cu(s) --> Ar(g) + Cu(g) 

• The model takes account of angular and energy 
  dependent etch and deposition rates.

• The model could simulate many different 
  chemistries and material mesh.

SiO2

METAL

RF
BIAS

Ar+ Cu+ Cu



UNIVERSITY OF ILLINOIS
OPTICAL AND DISCHARGE PHYSICS

SURFACE DIFFUSION ALGORITHM IN MCFPM
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• To reduce unphysical dendritic growth obtained during IMPVD, a diffusion 
  algorithm was incorporated into the MCFPM.

• Diffusion probability (PDIF) of the surface “cell” is*

PDIF ∝ exp −EA / kBT( ) , EA = ENEW − EOLD

 • EA activation energy for diffusion 
• T surface temperature
• ENEW, EOLD sum of potential (V) at locations 

before and after diffusion

• The potential (V) between two cells is given by a 
  mesh-modified Morse potential.

• For Cell 0 to diffuse to location 5, the contributing 
  cells to potential are: 

• Cells 1, 2, 3, 4 for EOLD of Cell 0

• Cells 4, 9, 10, 11 12, 13 for ENEW of Cell 5

*W. Helin et al., Vacuum 52, 435-440 (1999).
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TRENCH FILLING WITH AND WITHOUT DIFFUSION
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• Without diffusion, the Cu films 
  are unphysically porous and 
  non-conformal.

• With diffusion, Cu species 
  deposit compactly and 
  conformally.

• The majority of Cu+ are incident
  at 55 eV, and within 12 degrees 
  of the normal.

Trench Aspect Ratio = 1.1, Trench Width = 600 nm
Cu+ : Cu Neutrals = 4:1
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TRENCH FILLING VS PRESSURE
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• *Operating conditions: 

• 1 kW ICP 
• 0.3 kW magnetron
• -25 V dc bias on wafer

• Voids form at low pressure.  
  The voids fill with increasing 
  pressure and fill  at 40 mTorr.

• The ionization fraction of 
  increases with increasing 
  pressure, due to slowing 
  of Cu atoms which allows 
  more ionization.  
  
• Reasons for pinch-off:

   • Diffuse angular 
     distribution of the 
     neutrals 

   • Less sputtering of 
     over-hanging deposits

*Cheng, Rossnagel and Ruzic, JVST B 13, 203 (1995). 
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TRENCH FILLING WITH AND WITHOUT RESPUTTERING
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• Without resputtering, the 
  overhang deposits grow faster 
  than the bottom deposits, and 
  this leads to pinch-off at the top.

• Resputtering reduces the 
  overhang deposits, opens up 
  the top of the trench, and 
  enables more fluxes to arrive 
  at the bottom.

• Note that Ar+ contributes 
  significantly to resputtering.
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TRENCH FILLING VS MAGNETRON POWER
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• Operating conditions: 30 mTorr Ar, 1 kW ICP, -30 V dc bias on wafer.

• As magnetron power increases, the incident ion flux and the target bias  
  increase, and more Cu atoms are sputtered into the plasma. 

• The ionization fraction of the Cu atoms decreases since more power is 
  required maintain the same ionization fraction.

• The small void at low magnetron power was caused by microtrenching.
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TRENCH FILLING VS ICP POWER
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• Operating conditions: 30 mTorr Ar, 0.3 kW magnetron, -30 V dc bias on wafer.

• As ICP power decreases, the power available for Cu ionization decreases, 
  and the Cu ionization fraction decreases.

• The pinch-off at low ICP power is caused by low ionization fraction.

Cu+ : Cu Neutrals = 3:1
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CONCLUDING REMARKS
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• An integrated plasma equipment-feature scale model has been developed and 
  applied to IMPVD modeling.

• Surface diffusion is an important process in metal deposition.

• The deposition model was validated by comparing to experimental observations.

• Formation of voids in trench filling occurs when the ionization fraction of the 
  depositing metal flux is low.

• Both the directionality of ions and resputtering of overhang deposits are 
  beneficial to trench filling.

• The desirable conditions for complete trench filling are high pressure, low 
  magnetron power, and high ICP power.


