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ELECTRODELESS LAMPS AND TRAPPING
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• Electrodeless gas discharges are finding increasing use in the lighting
industry due to their increased lifetime.

• Investigations are underway to increase the efficiency of these lamps, now
≅ 25%.

• Typical fluorescent lamps consist of Ar/Hg ≈ 97/3. Resonance radiation
from Hg (63P1) (254 nm) and Hg (61P1) (185 nm) excites phosphors which
generate visible light.

• This resonance radiation can be absorbed and reemitted  many times prior
to striking the phosphor.

• The consequence of trapping is to lengthen the effective lifetime of
emission as viewed from outside the lamp.

• Control of resonance radiation trapping is therefore important to the
design of such lamps.



PHYSICAL PROCESSES
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• Detailed level analysis of the radiative transitions as well as isotope effect
studies have been performed.

• The reaction chemistries for the multi-level and the isotope studies are
similar and are shown here:
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• Ar is a buffer gas, and radiation exciting the phosphor is all due to the
mercury transitions.



PAST TREATMENT OF RADIATION TRANSPORT
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• Characterization of trapping is typically done using Holstein factors

• A→A.g,

where A is the Einstein A-coefficient and g is a geometry-dependent
factor. For a cylinder,

• R0πk1.115g=   (impact broadened)

• R)0ln(k πR0k1.60g=   (Doppler broadened)

       where k0 is the absorption coefficient at line center.

• This method fails for more complex geometries, where the propogator
cannot be easily evaluated.



MONTE CARLO METHODS FOR RADIATION TRANSPORT
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• Monte Carlo methods are desirable for complex geometries where it is not
easy to evaluate propogator functions.

• We have developed a Monte Carlo radiation transport model (MCRTM) for
the radiative transitions of mercury.

• This model can be used to study isotope effects as well as multi-level
transitions.

• The model incorporates the effects of Partial Frequency Redistribution
(PFR) and quenching of excitation, using a Voigt profile for emission and
absorption.

• However, one needs a self-consistent plasma model to account for
evolution of gas densities, temperatures and other plasma parameters.

• To address this need, the MCRTM is interfaced with the Hybrid Plasma
Equipment model (HPEM) to realistically model the gas discharge.



SCHEMATIC OF THE HYBRID PLASMA EQUIPMENT MODEL
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MONTE CARLO RADIATION TRANSPORT MODEL (MCRTM)
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• Monte Carlo method is used to follow trajectories of photons from initial
emission to escape from plasma.

• The absorption/emission lineshape function is a Voigt profile.

• MC photons are generated in proportion to the excited atom density at
each point in the plasma.

• To avoid statistical errors, we uniformly choose the frequency of photons
from a specified bandwidth and assign a weighting which accounts for the
lineshape profile.

• The null collision method is employed for the photon transport.



TRAPPING FACTOR AND PFR
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• We define the trapping factor as

    natresk ττ= ,

    where τres is the average residence time of the photon in the plasma, and
    τnat is the natural lifetime of the excited state.

• After each absorbing collision at photon frequency ν, the partial frequency
redistribution is incorporated by randomly choosing a new frequency
within a range ν ± ∆ν.

• The value of ∆ν was found by simulating trapping in a cylindrical
discharge with a uniform density of Ar and Hg atoms and comparing the
simulation results with those found by Lister.

• The results agreed well for ∆ν ≈α ∆νd, where α ranged from 1.5 to 2.0.



BASE CASE CONDITIONS
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• Diameter – 9 cm
• Height – 8 cm
• Depth – 5 cm
• Initial pressure – 500 mTorr
• Initial temperature – 400 K
• Operating power – 50 W
• Operating frequency – 2.65 Mhz

• Initial Ar mole fraction ≅ 0.98
• Initial Hg mole fraction (ground

state) ≅ 0.02

• For the isotope study, the initial
concentrations ≅ 95 : 5 0 2 4 6
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ELECTRON TEMPERATURE AND DENSITY

GEC01_KAPIL_10

          University of Illinois
  Optical and Discharge Physics

• Peak electron temperature (≈ 2 eV) surrounds the reentrant coil resulting in
a peak electron density in an annulus around the antenna.
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Hg GROUND AND EXCITED STATE DENSITIES
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• Cataphoresis and gas heating produce a maximum Hg density near the
walls, which results in the maximum of Hg* density occurring towards and
near the inner wall.
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MULTI-LEVEL TRANSITIONS
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• A study was made of the Hg (61P1) → Hg (61S0) transition at 185 nm as well
as the Hg (63P1) → Hg (61S0) transition at 254 nm.

• The states Hg 61S0, 63P0, 63P1, 63P2, 61P1, 63DJ, and 73S1 were treated as
separate species.

• As a result of different vacuum
lifetimes, the photons are absorbed
and reemitted many more times for
the 185 nm transition before they
leave the plasma, and the trapping
factor goes up by as much as two
orders of magnitude.

• This result agrees well with the Holstein formulation for a Doppler-broadened
line in cylindrical geometry.

• )ln(k k1g≈ , where k=σN, so for the same number density, the trapping factor
scales inversely with vacuum lifetime.
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EMISSION SPECTRA FOR MULTI-LEVEL STUDIES
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• The UV profile is line reversed near the center frequency, because most of
the photons that escape are in the wings of the profile.

• An increase in ground state absorbers due to an increase in cold spot
temperaure affects the 185 nm transition more than the 254 nm transition.
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EMISSION SPECTRA FOR ISOTOPE STUDIES
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• At sufficiently large inter-isotope spacing, only self-trapping is seen.

•  As the line centers converge, the photons can “spill” easily between
isotopes, creating asymmetry in the shoulders of the UV profile.
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EFFECT OF PRESSURE ON TRAPPING FACTOR
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• The pressure was increased keeping ground state densities and cold spot
temperature constant, leading to a broadening of the line profiles.

• At first, the trapping factor goes up as the lineshapes begin to overlap.

• When pressure is increased further,
the trapping factor for an isotope
goes up or down depending on
whether its self-trapping decreases
slower or faster than the other
isotope.

• This is because the photon escape
paths are now limited to the wings of
the combined profile.
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DEPENDENCE ON PLASMA GEOMETRY
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• The plasma volume was increased keeping other parameters constant.

• As the radius increases, the photons have to traverse a larger column of
length of Hg before escaping the plasma.
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CONCLUSIONS

GEC01_KAPIL_17

          University of Illinois
  Optical and Discharge Physics

• A self-consistent Monte Carlo radiation transport model has been
developed which, in conjunction with a plasma equipment model, can be
used to realistically model resonance radiation transport in a gas
discharge, for complex geometries.

• It is seen that for similar number densities, the radiation trapping factor
scales inversely with the vacuum radiative lifetime.

• The effect of pressure was investigated on isotopes which were optically
thick. The trend of the trapping factor depends on the relative rate of fall-
off of self-trapping for each isotope.

• Finally, we see that cataphoresis causes a non-uniform distribution of
radiative absorbers and emitters, and scaling laws which apply to simpler
density profiles are not valid in these lamps.




