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• Electrodeless gas discharges are finding increasing use in lighting
applications due to their increased lifetime.

• Investigations are underway to increase the efficiency of these lamps, now
≅≅ 25%

• Typical fluorescent lamps consist of Ar/Hg ≈≈ 97/3. Resonance radiation
from Hg(63P1) (254 nm) excites phosphors which generate visible light.

• Resonance radiation, produced by electron impact excitation of Hg (61S0)
to Hg(63P1), can be absorbed and reemitted many times prior to striking
the phosphor.

• The consequence of radiation trapping is to lengthen the effective lifetime
of emission as viewed from outside the lamp.

• Control of resonance radiation trapping is therefore important to the
design of such lamps.



PHYSICAL PROCESSES
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• The excited Hg and Ar levels have been treated as a single state.
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• Ar is a buffer gas. Radiation exciting the phosphor is essentially all due to
the mercury transition.



PAST TREATMENT OF RADIATION TRANSPORT
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•  Characterization of trapping is typically done using Holstein factors

•  gAA ⋅→ ,

where A is the Einstein A-coefficent and g is a geometry-dependent
factor. For a cylinder,

•  Rpπk1.115g=    (impact broadened)

•  R)0ln(k πR0k1.60g=   (doppler broadened)

where k  is the lineshape profile.

•  This method fails for more complex geometries, where the propogator
cannot be easily evaluated.



MONTE CARLO METHODS FOR RADIATION TRANSPORT
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• Monte Carlo methods are desirable for complex geometries where it is not
easy to evaluate propogator functions.

• We have developed a Monte Carlo resonance radiation transport model for
the trapping of the 254 nm radiative transition for mercury.

• This model incorporates the effects of Partial Frequency Redistribution
(PFR) and quenching of excitation, using a Voigt profile for emission and
absorption.

• However, one needs a self-consistent plasma model to “drive” the kinetics
and to account for evolution of gas densities, temperatures and other
plasma parameters.

• To address this need, the Monte Carlo resonance radiation transport
model is interfaced with the Hybrid Plasma Equipment Model (HPEM) to
realistically model the gas discharge.



SCHEMATIC OF THE HYBRID PLASMA EQUIPMENT MODEL
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MONTE CARLO RADIATION TRANSPORT MODEL (MCRTM)
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• Monte Carlo method is used to follow trajectories of photons from initial
emission to escape from plasma.

• The absorption/emission profile used is a Voigt profile.

• MC photons are generated in proportion to the excited atom density at
each point in the plasma.

• The initial frequency of each photon is not directly sampled from the
lineshape profile. Instead, to avoid statistical errors, we choose the
frequency uniformly from a chosen bandwidth, and assign to this particle
a weighting which accounts for the lineshape profile.

• The null collision method is employed for the photon transport.



TRAPPING FACTOR AND PFR
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•  We define the trapping factor as

natτ
resτ

k ====  ,

     where ττττres is the average residence time of the photon in the plasma, and
ττττnat is the natural lifetime of the excited state.

•  After each absorbing collision at photon frequency νννν, the partial frequency
redistribution is incorporated by randomly choosing a new frequency
within a range νννν ±±±± ∆∆∆∆νννν.

•  The value of ∆∆∆∆νννν was found by simulating trapping in a cylindrical discharge
with a uniform density of Ar and Hg atoms, and comparing the results with
those found by Lister.

•  The results agreed well for ∆∆∆∆νννν ≈≈≈≈ αααα ∆∆∆∆ννννd, where αααα ranged from 1.75 to 2.0.



BASE CASE CONDITIONS
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• Diameter – 9 cm
• Depth – 5 cm
• Height – 8 cm
• Initial pressure – 250 mTorr
• Initial temperature – 400 K
• Operating power – 50 W
• Operating frequency – 2.65 Mhz
• Initial Ar mole fraction- 0.98
• Initial Hg mole fraction – 0.02
• Only 254 nm resonance line has

been studied.

• The trapping factor for these
conditions is ≈≈40 0
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ELECTRON DENSITY AND TEMPERATURE
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• Peak electron temperature (≈≈ 2 eV) surrounds the reentrant coil resulting
in a peak plasma density in an annulus around the antenna.
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Hg GROUND AND EXCITED STATE DENSITIES

ICOPS01_11

          University of Illinois
  Optical and Discharge Physics

• Cataphoresis and gas heating produce a maximum Hg density near the
walls, which results in the maximum of the Hg* density occurring in the
top “dome” and near the walls.
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DEPENDENCE ON Ar PRESSURE
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• The fill buffer gas pressure was
increased while keeping other
parameters (e.g. Hg density)
constant.

• The increase in Ar – Hg* collision
frequency produces a broader
redistribution of re-emission
allowing the photons to move into
the wings of the lineshape profile.

• Owing to a longer mean free path
in the wings, the photons can
escape the plasma more easily,
reducing the trapping factor.
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DEPENDENCE ON GAS TEMPERATURE
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•  The initial background gas
temperature was varied keeping
initial ground state number
densities and other parameters
constant.

•  As the temperature is increased,
the number of collisions that the
gas atoms undergo increases, and
this allows for a higher
redistribution.

•  Moreover, the increase in
temperature affects the Voigt
profile via the Doppler
broadening. Therefore, the
trapping factor decreases.
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DEPENDENCE ON PLASMA GEOMETRY
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•  The plasma volume was increased by increasing the outer radius of the
lamp and other parameters are constant.

•  As the radius increases, the photon has to traverse a larger column of
length of Hg before escaping the plasma.

•  This average column length is
less than R, the radius of the
discharge, which explains the
difference of our results from
Holstein factors ( )(R lnR  ~ g  ).
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EMISSION SPECTRA
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• Due to radiation trapping , line reversal is observed in the UV emission
spectra near the center frequency because the photons that leave the
plasma are mainly in the wings.

0-2.5 2.5

1.0

0.8

0.6

0.4

0.2

0

N
or

m
al

iz
ed

 ra
di

at
io

n 
in

te
ns

ity

Normalized frequency ( ν−ν0/∆νd)

• No trapping

0-2.5 2.5

1.0

0.8

0.6

0.4

0.2

0
N

or
m

al
iz

ed
 ra

di
at

io
n 

in
te

ns
ity

Normalized frequency ( ν−ν0/∆νd)

• With trapping (base case)



EMISSION SPECTRA (contd.)
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• Emission spectra were also obtained while increasing mole fraction of Hg
and the radius of the plasma column. Increased trapping led to greater line
reversal.
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SUMMARY AND FUTURE WORK
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• A self-consistent Monte Carlo radiation transport model has been
developed which, in conjunction with a plasma model, can be used to
realistically model resonance radiation transport in a gas discharge, for
complex geometries.

• Studies have been carried out on the Hg (63P1) →→  Hg (61S0) transition
under different geometries and gas pressures.

• The future work that has to be carried out includes

• Study of the other resonance radiation levels

• Inclusion of isotope effects

• Detailed analysis of all transitions involved by treating each excited
state level separately.


