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AGENDA
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• Reflection on 10 years past...

• ITRS Requirements

• Knowlegebase Generation

• The "challenge": Smart, Aware and Proactive Tools

• Examples of SAP Tools

• New systems and materials

• Concluding Remarks



QUALIFICATIONS TO GIVE THIS TALK....
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37th AVS INTERNATIONAL SYMPOSIUM
October 1990, Toronto, Canada
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Topics from papers appearing in Proceedings of 37th AVS International
Symposium

Plasma Sources:

Helicon 1 ECR 10
RIE 8 Magnetron 1
ICP 0 Ion Beam 1

Materials:

Polymer 2 SiGe 1
Si3N4 1 p-Si/c-Si 3
SiO2 2 GaAs 1



JVST A 9, 722 (1991)
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• Cl2 plasma

• Measurements of ion energies arriving at the substrate correlate with peak
plasma potential, indicating collisionless acceleration through (pre)sheath.
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• Laser light
scattering from
patterned wafers
is spatially
anayzed as a
sensor for
feature shape.



Quantification of surface film formation effects in fluorocarbon plasma
etching of polysilicon

David C. Gray and Herbert H. Sawin
Department of Chemical Engineering, MIT, Cambridge Massachusetts 02139

Jeffrey W. Butterbaugh
IBM, General Technology Division, Essex Junction, Vermont 05452      JVST A 9, 779 (1991)
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• Radical/ion beams synthesize the plasma tool environment and show a
decrease in p-Si etching with CF2/Ar+ ratio due to overlying polymerization.



CHALLENGES FOR < 100 nm BEYOND 2005
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• ITRS cites many "no known solutions" for interconnect to meet the 55 nm
technology node by 2011.



CHALLENGES FOR < 100 nm BEYOND 2005
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• The challenges cited to meet the ITRS goals focus on new materials and
structures.

Int. Tech. Roadmap Semi.: Interconnect 1999



CHALLENGES FOR < 100 nm BEYOND 2005
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• Potential solutions for
etch emphasize new
materials, high plasma
density sytems and
cleans.



MARKETS AND APPLICATIONS
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• With the advent of high speed networks and parallel computing, past
specialized markets for logic have collapsed to a single line.

• As processing becomes more critical (expensive) at <100 nm nodes and
applications return to centralized computing, the market may bifurcate.
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"GENERIC" PLASMA PROCESSING REACTOR
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• For purposes of illustration during this talk, a "generic" plasma
processing reactor will be used to demonstrate principles.
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INNOVATION REQUIRES MASTERY OF THE BASICS
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THE PROBLEM....
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• Uniformity and control of reactants becomes increasingly more difficult  as
wafer sizes increase and process chemistries become more complex.

• For example, non-uniformities in ion flux (sheath edge plasma density)
across a wafer produce a change in sheath thickness and a
commensurate change in ion energy-angular distributions.
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THE PROBLEM....
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•• The end result is a loss in CD control (center-to-edge) which, tollerable at
larger feature sizes is intolerable at smaller feature sizes.
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SMART, AWARE AND PROACTIVE TOOLS
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• In spite of tremendous progress in the design of plasma tools, most such
tools are passive or, at best, reactive to their own environment.

• The case is made that continuing innovation requires Smart, Aware and
Proactive (SAP) tools.

• SMART:  mentally alert, knowledgeable, shrewd

• AWARE:  having or showing realization, perception or knowledge

• PROACTIVE:  involving modification by a factor which proceeds that
 which is being modified.

Webster's New Collegiate Dictionary

• A SAP tool is one that:

• Senses its internal reactive environment
• Has access to a knowledge base which enables it to interpret these

observations
• Changes its environment to meet specifications.



THE CASE FOR SAP TOOLS
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• The move towards foundries by even major chip producers implies that a
larger variety of processes will be performed in a given tool over its
lifetime; and that those processes will change more frequently.

• Tools must be "reconfigurable" rapidly.
• Tool memory effects may be unavoidable and unpredictable.

• As new materials are developed (e.g., low-k, high-k) having more stringent
CDs, recipes will likely become more complex.

• What is optimum for one mixture is not optimum for another.
• More demanding requirements to widen process windows.

• As wafer sizes and die complexity increase, the value/wafer enables
expenditures which now are discounted.



DOES The KNOWLEDGE BASE EXIST FOR SAP TOOLS
(OR CAN IT BE GENERATED?)
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• Realizing SAP tools requires an intimate knowledge of the cause-and-
effect relationship.

"If I observe A and do B, then C will result."

• This cause-and-effect knowledge base can be generated by a range of
methods ranging from empirical to a priori.

• Empirical: Conventional DOE
• A priori: Predict from first principles
• Semi-Empirical/A priori: First principles bounded or normalized

by empiricism.

• At present the knowledge base does not exist for SAP tools, largely
because the observables A are too far removed from the outcomes C.

• The methodology and technologies to realize SAP tools do, however, exist
or can be developed.



GENERATION, APPLICATION AND EXTENSION OF
KNOWLEDGE BASE: FEATURE EVOLUTION (D. B. Graves)
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• Advancing the knowledge base in feature evolution has required a
combination of apriori, semi-empirical and empirical calculations and
measurements, supported by validating experiments.

• The group/collaborators of D. B. Graves demonstrate this methodology.

• Sticking coefficients on evolving
surfaces (CF3

+ on Si)
• Reflection coefficients of ions

from surfaces (Cl2
+ on Si)



GENERATION, APPLICATION AND EXTENSION OF
KNOWLEDGE BASE: FEATURE EVOLUTION (D. B. Graves)
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• Equipment Scale Modeling (Ion
Energy Distributions)

• Feature Scale Modeling (Si
etching by Cl2/HBr)



GENERATION, APPLICATION AND EXTENSION OF
KNOWLEDGE BASE: FEATURE EVOLUTION (D. B. Graves)
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• Validating data

• C.F. Abrams and D. B. Graves,
JAP 86, 5938 (1999)

• M. Voyoda et al, JVSTB 18, 820
(2000)

• B. Helmer and D. B. Graves,
JVSTA 17, 2759 (1999)



ABC PRODUCT BUSINESS GROUPETCH PRODUCT BUSINESS GROUP
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ABC PRODUCT BUSINESS GROUPETCH PRODUCT BUSINESS GROUP
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q A new diagnostic for detecting
species and films formed on the
reactor walls.

q What is formed on reactor
walls during etching? How does
it affect the plasma?

q Applications

Ø Detecting Fluorocarbon
films on the walls

Ø SiOxCly films in Si etching
Ø PECVD

Ø Monitoring reactor wall
cleaning steps.

Ø Ref: Eray Aydil, UCSB,
aydil@engineering.ucsb.edu

Multiple Total Internal Reflection Fourier Transform InfraredMultiple Total Internal Reflection Fourier Transform Infrared
(MTIR-FTIR) surface probe(MTIR-FTIR) surface probe
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Ø Ref: Eray Aydil, UCSB,
aydil@engineering.ucsb.edu



q During Cl2/O2 etching of Si, SiOxCly film deposits on the reactor walls.

q SiOxCly film must be etched from the reactor walls using F-containing plasma in
between every wafer in a step referred to as Waferless Auto Clean (WAC).

q MTIR-FTIR probe help develop successful WAC in Lam’s TCP reactor for Si STI
etching and improved productivity.

Incomplete Cleaning Step Optimized Cleaning Step

Application of MTIR-FTIR surface probe: reactor wall cleaningApplication of MTIR-FTIR surface probe: reactor wall cleaning

Ø Ref: Eray Aydil, UCSB,
aydil@engineering.ucsb.edu

600 800 1000 1200 1400

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

After Cl 2/O2 

etching of Si

 

 

A
bs

or
ba

nc
e

Wavenumbers (cm-1)

After SF6/O2 

plasma cleaning

600 800 1000 1200 1400

After Cl2/O2 

etching of Si

A
bs

or
ba

nc
e

Wavenumbers (cm -1)

After SF6/O2 

plasma cleaning

0.0

0.2

0.4

0.6

0.8

 

 



MEMS (MICRO-ELECTRO-MECHANICAL SYSTEMS)
MICROSENSORS FOR SMART WAFERS
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• The development of MEMS technologies provide the opportunity to
implement intra-tool sensors and, ultimately, on-wafer sensors resulting in
the wafer analogue of the smart-tool: the Smart Wafer

• MEMS sensors enable measurements of, for example, reactive fluxes to be
made at or near the wafer surface.

• Provides data directly relevant to process control

• Eliminates need to disengage complex relationships between
measurements of, for example, OES and desired quantities such as
flux.

• Smart Wafers may have unique sensors for individual processes, thereby
eliminating the need for over-functionality to be built into the tool.



SUB-MICRON RETARDING FIELD ENERGY ANALYZER
(M. BLAIN, Sandia National Labs)
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• Leveraging MEMS technologies, Blain et al have developed sub-micron ion
energy anlyzers which provide the means for non-perturbing, in-situ, on-
wafer measurements.

• Micro-Ion Energy Analyzer fabricated using MEMS technologies



SUB-MICRON RETARDING FIELD ENERGY ANALYZER
(M. BLAIN, Sandia National Labs)
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VIRTUAL PLASMA EQUIPMENT MODEL (VPEM)

MURI9920
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l  The Virtual Plasma Equipment Model (VPEM) is a “shell” which supplies sensors,
    controllers and actuators to the HPEM.
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CONTROLLER
MODULE

INITIAL AND OPERATING CONDITIONS

SENSOR POINTS AND ACTUATORS

SENSOR
MODULE

ACTUATOR
MODULE

SENSOR
OPERATING

POINTS

“DISTURBANCE”



PID CONTROLLER
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•• A Proportional-Integral-Differential (PID) controller has been implemented
in the VPEM.

• Proportional:
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PROCESS VARYING WALL CONDITIONS
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• During a process recipe, deposition on reactor side walls (or changes in
process conditions) results in changes in reactive-sticking coefficients,
producing both intra-run and run-to-run variations in performance.

• Chamber cleans are, in large part, necessary to "reset" the reactor to
"initial conditions".

• Particle formation concerns aside, the difficulty in using real-time-control
to compensate for evolving wall conditions is the uncertainty in correlating
observables (e.g., OES, actinometry) with fluxes to wafer surface.

• SATs and SAWs eliminate this uncertainty, by directly measuring process
relevant parameters.

• Example:  Cl →→ Cl2 sticking coefficient increasing during process.



Cl →→ Cl2 STICKING COEFFICIENT
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• During a process, the sticking coefficient on chamber walls increases from
0.01 to 0.4 due to deposition of etch products.
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Cl →→ Cl2 STICKING COEFFICIENT: ION FLUENCE-POWER RTC
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• A simple proportional controller with a wafer-level ion flux sensor is used.
The desired ion fluence, perturbed by the change in Cl sticking coefficient,
is largely recouped.

5 1017

6 1017

7 1017

8 1017

9 1017

450

500

550

600

650

40 60 80 100 120
ITERATION

IO
N

 F
LU

E
N

C
E

 (
1/

s)

IC
P

 P
O

W
E

R

POWER

PERTURBED

CONTROLLED
TARGET

START RTC

• Ar/Cl2 = 70/30, 20 mTorr, 500 W, 200 sccm



CHOICE OF SENSOR FOR TRANSIENTS: ACTINOMETRY
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•• The proper choice of sensor is critical to controlling through transients.

• Sensors which are adequate for perturbations to the steady state may fail
during a transient.

• Example:  Impulsively change the coefficient for Cl →→ Cl2 on walls while
keeping the input flow rate and pressure constant.
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CHOICE OF SENSOR FOR TRANSIENTS: ACTINOMETRY

GECA9909

          University of Illinois
  Optical and Discharge Physics

• As a result of the absolute increase in Ar density (and Ar* signal) resulting
from the change in mole fractions, the actinometry signal decreases
relative to the actual Cl density.
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SMART WAFER: ION FLUX AND UNIFORMITY
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• Intra-process seasoning of walls changing reactive sticking coefficients
produces changes in both magnitudes and uniformity of fluxes.

• Smart wafer techniques will be applied to control against changes in ion
flux and uniformity following a change in sticking coefficient for Cl →→ Cl2.
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• Ar/Cl2 = 50/50, 20 mTorr, 500 W, 200 sccm



ION SOURCE AND FLUXES
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• Due to the increase in Cl2 resulting from the increase in Cl →→ Cl2 on walls
ion sources are confined closer to the coils.

• The ion flux decreases and becomes more edge high.

UNPERTURBED (LOW Cl2) PERTURBED (HIGH Cl2)ION SOURCE 
FLUX VECTORS

• Ar/Cl2 = 50/50, 20 mTorr, 500 W, 200 sccm



ION FLUENCE MAGNITUDE AND UNIFORMITY
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• The shift in ion source to larger radius increases the ion flux at large
radius thereby making uniformity more edge-high.

• Larger rates of attachment and higher wall losses decrease the ion flux.

• These trends will be corrected using ICP power and B-field as actuators.
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MAGNETIC FIELD AS AN ACTUATOR
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• By applying moderate solenoidal
magnetic fields (a few - 10s G), radial
and axial components of the inductively
coupled field are generated.

• This results in shifts in the power
deposition, and can be used as an
actuator for ion flux uniformity.

• Ar/Cl2 = 70/30, 20 mTorr, 500 W, 200 sccm
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CONTROLLED ION FLUX MAGNITUDE AND UNIFORMITY
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• Using proportional controllers with moderately high gain (0.5), uniformity
and ion flux are restored to their target values.

• The use of on-wafer sensors insures target values directly correlate with
desired reactant properties.
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TAPERING AND BOWING OF PROFILES
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• Feature profiles in fluorocarbon plasma etching of SiO2 often have bowed
or tapered profiles.

SiO2

PR

BOWED TAPERED

C Cui (AMAT)

• Control of profile CD (and selectivity) ultimately
depends on control of not only uniformity and
magnitude of reactants, but also flux composition.

• For example, bowing and tapering have been
correlated with the ratio of polymerizing radical
fluxes to ion fluxes.

• On wafer measurements of species resolved,
neutral and ion resolved fluxes are beyond the state
of the art.

• However, innovating such sensors may be the key
to maintaining CDs to 0.08 nm and beyond.



CORRELATION OF PROFILE WITH REACTANT FLUX RATIOS
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• Results from integrated plasma equipment and feature profile modeling
have shown that SiO2 feature profiles can be correlated with the ratio of
the passivating neutral flux to the ion flux.
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• Quantitative knowledge of these trends, coupled with measurement of
composition of reactive flux, provide the means ot control profile CD.



SMART WAFER: ION FLUX AND ION/NEUTRAL RATIO

AVS00_25

          University of Illinois
  Optical and Discharge Physics

• Intra-process seasoning of walls changing reactive sticking coefficients
produces changes in both magnitudes and ratio of fluxes.

• Smart wafer techniques will be used to control changes in ion flux and
neutral/ion flux ratio following a change in sticking coefficient for CF2.
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• An increase in CF2 sticking
coefficient on walls
decreases the
polymerizing flux (mostly
CF2 and CF).

• The ion flux remains nearly
constant, producing a
large decrease in the
neutral/ion flux ratio.

• Ar/C2F6= 60/40, 15 mTorr, 500 W, 200 sccm



Ar/C2F6 ION FLUX AND NEUTRAL/ION RATIO vs PRESSURE
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• To determine process variables to control, computational (or experimental)
DOEs are performed.

• Power (to control ion flux) and pressure (to control ineutral/ion flux ratio)
are chosen.
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• Ar/C2F6= 60/40, 500 W, 200 sccm



Ar/C2F6 NEUTRAL/ION RATIO CONTROLLED
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• Using power and pressure as actuators, the on wafer flux sensors direct
increases in both values to maintain flux ratios and power constant.
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• With on wafer
sensors, profile CD
control is directly
correlated to
measurements.

• Ar/C2F6= 60/40, 200
sccm



CONFLUENCE OF MICROELECTRONICS-AND-MEMS:
SYSTEMS ON-A-CHIP
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• The plasma processing community has been slow to recognize and
potential of combining microelectronics with MEMS to create systems-on-
a-chip.

• The ITRS lists examples of future SOCs, and cites cost as the present
limiting factor in developing such systems.

Int. Tech. Roadmap Semi.: System-on-Chip 1999

• Never-the-less, market forces will drive this integration, and so the
knowledge base to implement it should be addressed now.
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Parallel atomic force imaging with MEMS to 
exceed densities of conventional magnetic and 
optical storage
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COMBINING ORGANIC LEDs WITH CMOS
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• Combining organic light-emitting-diodes with CMOS provides a means for
Si-based optical interconnects for inter/intra-die communication.

8 x 8 OLED with CMOS Circuitry Laser Focus, September 2000, p.38



MEMS FABRICATION BRING NEW CHALLENGES
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• Although MEMS dimensions are now large by microelectronics standards,
extreme aspect ratios push the state of the art. As MEMS dimensions
shrink, these HAR features will rapidly exceed the state-of-the-art.

J. MEMS 8, 403 (1999)

Accelerometer fabricated with Deep RIE



JVST B 18, 1890 (2000)
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• Extreme HAR etching using Cl2
and SF6/O2 chemistries (l) 5 hr Cl2 ICP etch with (r) 10 min

widening process



A Microfabricated Inductively Coupled
Plasma Generator

Jeffrey A. Hopwood

J MEMS
9, 309 (2000)
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• Innovative SAP tools may use real-time-control with sensor equipped
smart wafers to guide arrays of plasma sources fabricated using MEMS
techniques.



HUMAN RESOURCES: THE SOURCE OF INNOVATION

AVS00_07

          University of Illinois
  Optical and Discharge Physics

• Ultimately, our ability to sustain innovation in our field relies on the talent
of our human resources.

• Our field is perhaps unique is that innovations are generally produced by
broadly educated scientists and engineers, as opposed to narrowly
defined specialists.

• As a result, the "yield" from science and engineering college graduates is
typically not high.

• To maintain and increase our progress, we must continue to capture the
best and brightest of our college graduates.



HUMAN RESOURCES: THE SOURCE OF INNOVATION
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• Although the total
number of BS and
graduate degrees
continues to
increase, the
fractions in
Engineering and
Physical Sciences
are decreasing.

Ref: NSF00-3100
       S&E Degrees 1966-97



HUMAN RESOURCES: THE SOURCE OF INNOVATION
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• Although a single field in a given industry cannot change reverse these
trends, the health of our field requires pro-active measures on our parts.

• Mentoring programs
• University collaborations
• Internships
• Scholarships and Fellowships
• Grammar and secondary school outreach.

• Student attitudes towards science and engineering, particularly for under-
represented groups, are typically unchangeable after junior high. Outreach
programs must also target these younger prospects.



GENERATING THE KNOWLEDGEBASE
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• Generating the knowledge base required to
fulfill this challenge is as large a challenge as
implementing the solutions.

• Collaborations are clearly the most viable
option to achieve these goals.

• Looking ahead 10 years, one must also reflect
on how well industry wide collaborations have
served us during the past 10 years.

• SRC, Sematech, DARPA, NSF Initiatives have
all served in this capacity with varying degrees
of success.

• The emphasis on pre-competitive,
collaborative research (industry-university-
national lab) has, however, declined of late.  A
reassessment of that strategy is necessary.



FOR MORE INFORMATION
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•• Copy of today's presentation:

http://uigelz.ece.uiuc.edu  →→ "Presentations" link at top of page

• PS-TuM7 [next paper], R.L. Kinder, "Electron Transport and Power
Deposition in Magnetically Enhanced Inductively Coupled Plasmas"

• PS2-ThA4, D. Zhang, "Reaction Mechanisms and SiO2 Profile Evolution in
Fluorocarbon Plasmas: Bowing and Tapering"

• PS1+MS-WeA7, E.A. Edelberg, "Productivity Solutions for Eliminating
Within-Wafer and Wafer-to-Wafer Variability in a Silicon Etch Process
through Plasma and Surface Diagnostics"

• PS2-ThM8, M.J. Sowa, "Electron Temperature and Ion Energy
Measurements with A High-resolution, Sub-micron, Retarding Field
Analyzer"

• PS2-TuA2, H. Singh, "Comprehensive Measurements of Neutral and Ion
Number Densities, Neutral Temperature, and EEDF in a CF4 ICP"


