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AGENDA
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• Introduction to Magnetically Enhanced Reactive Ion Etching 
(MERIE) Plasma Sources.

• Description of Model

• Scaling of MERIE Properties

• Concluding Remarks
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MERIE PLASMA SOURCES

MJK_GEC02_03

• Magnetically Enhanced Reactive Ion Etching plasma sources 
use transverse static magnetic fields in capacitively coupled 
discharges for confinement to increase plasma density.

• D. Cheng et al, US Patent 4,842,683
• M. Buie et al, JVST A 16, 1464 (1998)
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INVESTIGATIONS OF MERIE SYSTEMS

• Although MERIEs have been used in industry for many years there 
are a surprisingly small number of published works on the 
fundamentals of these systems.

• G. Y. Yeom, et al, JAP 65, 3825 (1989) [Bias, potential measurements]
• A. P. Paranjpe, et al, JVSTA 10, 1140 (1991) [Model]
• K. E. Davies, et al, JVSTA 11, 2752 (1993) [Etch rate optimization]
• D. Hutchinson, et al, TPS 23, 636 (1995) [PIC Simulation]
• S. V. Avtaeva, et al, JPD 30, 3000 (1997) [Probe, OES]
• M. J. Buie, et al, JVSTA 16, 1464 (1998) [Etch uniformity optimization]
• S. Rauf, et al, ICOPS (2002) [2-D Modeling]
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SCALING OF MERIE SYSTEMS

• General scalings: More confinement due to B-field has geometric and 
kinetics effects. 
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• More positive bias with B-field
• G. Y. Yeom, et al JAP 65, 3825 (1989)

• Larger [e], Te with B-field
• S. V. Avtaeva, et al JPD 30, 3000 (1997)
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MODELING OF MERIE

• Hybrid Plasma Equipment Model

• Electron energy equation for bulk electrons
• Monte Carlo Simulation for high energy secondary 

electrons from biased surfaces
• Continuity, Momentum and Energy (temperature) equations 

for all neutral and ion species.
• Poisson equation for electrostatic potential
• Circuit model for bias
• Monte Carlo Simulation for ion transport to obtain IEADs   
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ELECTRON ENERGY TRANSPORT

S(Te) = Power deposition from electric fields
L(Te) = Electron power loss due to collisions
Φ = Electron flux
κ(Te) = Electron thermal conductivity tensor
SEB = Power source source from beam electrons
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• All transport coefficients are tensors:
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PLASMA CHEMISTRY, TRANSPORT AND ELECTROSTATICS

• Continuity, momentum and energy equations are solved for each species 
(with jump conditions at boundaries)

MJK_GEC02_ 08            

• Implicit solution of Poisson’s equation
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MERIE REACTOR

• The model reactor is based on a TEL Design having a 
transverse magnetic field.

MJK_GEC02_09             

• K. Kubota et al, US Patent 6,190,495 (2001)
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MERIE REACTOR: MODEL REPRESENTATION

• 2-D, Cylindrically Symmetric
• Magnetic field is purely radial, an approximation validated 

by 2-D Cartesian comparisons.
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Ar+ DENSITY vs MAGNETIC FIELD

MJK_GEC02_11

• 0 G, 1.9 x 1010 cm-3

• 50 G, 4.0 x 1010 cm-3

• 150 G, 4.7 x 1010 cm-3

• Ar, 40 mTorr, 100 W, 10 MHz

• Purely radial B-field 
parallel to electrodes

• Increasing B-field shifts 
plasma towards center 
and increases density.

• Plasma is localized closer 
to wafer. 
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• The localization of plasma density near the powered electrode at
large magnetic fields is partly attributable to the confinement of 
secondary electrons.
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• 12.5 G: 3.7 x 1013 cm-3s-1

• 150 G: 1.3 x 1014 cm-3s-1

IONIZATION BY SECONDARY ELECTRONS

• Ionization by secondary 
electrons is uniform 
across the gap at low B-
field; localized at high 
B-field.

• Ar, 40 mTorr, 100 W, 10 MHz
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• Similar trends are seen for bulk electrons. The transverse thermal 
conductivity decreases with increasing B-field, producing more 
localized hot electrons.
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IONIZATION BY BULK ELECTRONS

• Ar, 40 mTorr, 100 W, 10 MHz

• 12.5 G: 4.6 x 1015 cm-3s-1

• 150 G: 9.9 x 1015 cm-3s-1

• 12.5 G:    4.9 eV

• 150 G:    5.2 eV
• Bulk Ionization Rate • Electron Temperature   
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• The ion flux increases with increasing B-field due to lower 
transverse losses.

ION FLUX TO SUBSTRATE

• Ar, 40 mTorr, 100 W, 10 MHz

• Ar+ Flux at r=0 (1015 cm-2s-1)
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• Ar* transport, unaffected 
by B-field, has more rapid 
losses as source 
approaches substrate.

• Reduction in efficiency of 
ionization by smaller 
multi-step rate lowers ion 
flux.
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• Ion flux becomes center peaked at intermediate B-field; regaining 
uniformity at large B-field with stronger confinement.

ION FLUX vs RADIUS

• Ar, 40 mTorr, 100 W, 10 MHz
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• The dc bias generally 
becomes more positive with 
increasing B-field as the 
plasma is confined closer to 
the powered electrode.

• Constant power, decreasing 
ion flux, increasing bias 
voltage → More resistive 
plasma.
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dc BIAS AND RF VOLTAGE

• Ar, 40 mTorr, 100 W, 10 MHz
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Ar+ ENERGY AND ANGLE DISTRIBUTIONS

• Ar, 40 mTorr, 100 W, 10 MHz

• The more positive dc bias reduces the sheath potential.

• The resulting IEAD is 
lower in energy and 
broader.



University of Illinois
Optical and Discharge Physics

Ar+ DENSITY/FLUX vs POWER
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• 50 W, 2.3 x 1010 cm-3

• 100 W, 6.0 x 1010 cm-3

• 300 W, 2.0 x 1011 cm-3

• Ar, 40 mTorr, 100 G, 10 MHz

• Power produces more than linear increase in peak [Ar+] 
and sub-linear increase in flux with decrease in uniformity
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CONCLUDING REMARKS
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• Scaling laws for an industrial MERIE reactor have been 
computationally investigated; and map well onto 
experimental results.

• Increasing B-field localizes plasma near powered 
electrode, resulting in:

• Increase in [e]
• More localized ionization sources
• Small but localized increase in Te
• More positive Vdc

• Lack of “response” of Ar* to B-field may decrease ion 
fluxes by lowering multistep processes as sources move 
towards surface.  

• IEADs are sensitive to B-field due to scaling of Vdc. 


