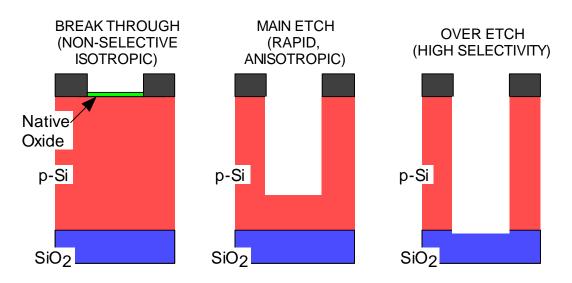
STRATEGIES FOR RAPIDLY DEVELOPING PLASMA CHEMISTRY MODELS*

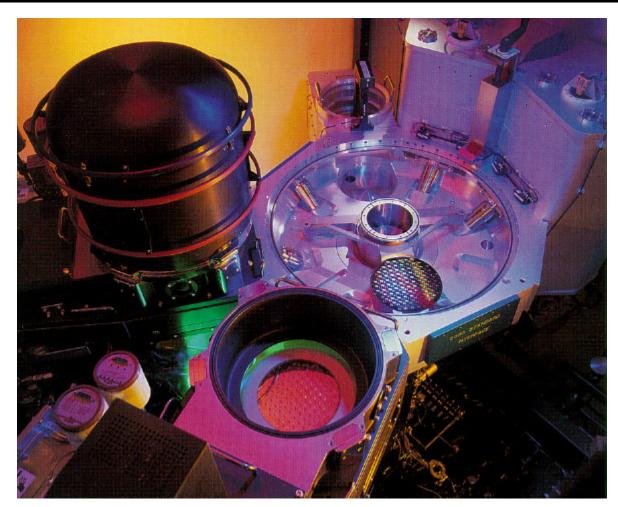
Mark J. Kushner University of Illinois Dept. of Electrical and Computer Engineering Urbana, IL, 61801, USA

October 1999


* Work supported by NSF, SRC and AFOSR/DARPA

GEC99A22

- Complex plasma chemistries for microelectronics fabrication
- What should you do if tasked with rapidly assessing a new chemistry?
- Components of your toolbox
- Sources of data
- If you must estimate or guess....
- Examples of rapidly assessed chemistries
- Concluding remarks


University of Illinois Optical and Discharge Physics

- Complex plasma chemistries for etching and deposition processes are everyday occurances in microelectronics fabrication.
- It is not unusual to have 4 or 5 component gas mixtures. (e.g., Ar/Cl₂/BCl₃/N₂/HBr)
- During a plasma etching process, it is not unusual for there to be 2-4 "recipe" changes.

• Recipe changes are different values of, for example, power, pressure, flow rate or gas mixture to address beginning, middle and end of the etch.

COMPLEX PLASMA CHEMISTRIES

• Most plasma processing tools have multiple chambers in which different chemistries (e.g., etch followed by clean) are used.

SCENARIO: QUICK EVALUATION OF A NEW PROCESS

 You work for a semiconductor equipment manufacturer. Your boss tasks you with computationally evaluating a newly proposed process. You are given <u>3 days</u> to complete the job.

- What should you have done *in preparation* for this request?
- What should you ask *before* starting the job?
- What is the *procedure* you should follow to fulfill the request?

BEFORE YOU WERE TASKED: A TOOLBOX

• In preparation of your task, you should have assembled a flexible computational toolbox.

Databases ®

DataBase Processor®

> Reaction Mechanisms ®

> > A "basic" global plasma model ®

Visualizer and postprocesser

COMPONENTS OF YOUR TOOLBOX

Databases:

- Ion and Neutral transport coefficients
- Electron-impact cross sections
- Heavy particle reaction coefficients
- Gas/plasma-surface reaction probabilities
- Data should be in as "unprocessed" a form as possible. (e.g., cross sections are preferred over Townsend coefficients)
- DataBase Processor:
 - Method to convert "raw" database to "model usable" coefficients (e.g., cross sections to rate coefficients)
 - Boltzmann solver
 - Maxwellian "integrator" of cross sections

University of Illinois Optical and Discharge Physics

• <u>Reaction Mechanisms:</u>

- A collection of previously used (and hopefully validated) reaction mechanisms.
- Scaling laws or IYMG (If you must guess) procedures for generating unavailable data.
- <u>A "basic" global plasma model</u>
 - Rapid (and error-less) method to convert a reaction mechanism into ODE's or PDEs
 - Method to convert "power" into "excitation' (Circuit model, electromagnetics solver)
 - Robust integration technique
 - Higher dimensionality (2D) as required
- <u>Visualization and post-processing</u>
 - •A standardized, rapid way to display and manipulate the results.

University of Illinois Optical and Discharge Physics

- The most reliable, most understood, most readily available, best formatted and most "comfortable" databases available are those you build *yourself* !
- Take FULL advantage of all external resources in building your database however devise a method of formatting, keeping track of references, revisions and updates which best suits *your* needs.
- (DON'T ALLOW YOUR ABILITY TO ACCOMPLISH YOUR GOAL BE LIMITED BY SOMEONE ELSE'S DECISION TO UPDATE THE FORMAT OF THEIR DATABASE...)
- In constructing your database, you will need to make value judgements on the goodness, appropriateness and validity of primary data sources or other databases.
- Make these decisions with some deliberate forethought as to what the database (or subsets of the database) will be used for.

- Example: What data are required for:
 - Investigating the effects of anisotropic electron scattering on the EEDF in an argon rf discharge.
 - Evaluating the consequences of adding $1\% H_2$ to $CF_2/C_2F_2 = 50/50$
 - These data requirements are very different BASED ON THE DESIRED OUTCOME.
 - One requirement is not better or worse, just different. (Incomplete data is not a bad thing if it is not needed....)

Publically Accessible Tabular Data:

• Art Phelps (http://jilawww.colorado.edu/www/research/colldata.html)

[O₂, N₂, CO, CO₂, H₂, H₂O, NO, SF₆, He, Ne, Ar, Xe, Na, and Mg]

• Skip Morgan/Kinema (http://www.sni.net/kinema/download.htm)

[N₂, O₂, H₂, Cl₂, HCl, F₂, CH₄, CF₄, SiH₄, SF₆, He, Ne, Ar, Kr, Xe]

 NIST Electronics and Electrical Engineering Laboratory (J. Olthoff) (http://www.eeel.nist.gov/eeel_pages/811.html)

 $[CF_4, CHF_3, CCI_2F_2, C_2F_6, C_3F_8, CI_2, SF_6]$

• University of Illinois (http://uigelz.ece.uiuc.edu)

[He, He*, Ne, Ne*, Ar, Ar*, Kr, Kr*, Xe, Xe*, N₂, N, O₂, O, H₂, H, Cl₂, Cl, F₂, F, SiH₄, Si₂H₆, CH₄, C₂H₆, CF₄, C₂F₆, H₂O, N₂O, NH₃, HCl, CCl₄, CCl₂F₂, NF₃ CO₂, CO, SO₂, BCl₃, BF₃, Hg, Hg*, HgBr, Cu, Cu*, Al, Al*, Ti, Ti*]

SOURCES OF DATA: ELECTRON-IMPACT

- C. Gorse, University of Bari, (cap@chimica.uniba.it): H₂(v),D₂(v)
- NIST Physics Division (Y.-K. Kim), Electron Impact Ionization (http://physics.nist.gov/PhysRefData/Ionization/Xsection.html)

[H, He, SiFx, SF₆, H₂, N₂, O₂, H₂O, CO, NO, CO₂, NH₃, CH, CH₂, C₂H₂, CH₃, CH₄, C₂H₄, C₂H₆, C₃H8, C₆H₆, SiF, SiF₂, SiF₃, SF₆, CS, CS₂, COS, H₂S, NO₂, N₂O, O₃, S₂, SO₂, SiH, SiH₂, SiH₃, SiH₄, Si₂H₆, Si(CH₃)₄, GeH, GeH₂, GeH₃, GeH₄, Ge₂H₆, CF₄, C₂F₆, CF₃]

 ORNL "RedBooks" (He, H₂, D₂) (http://www-cfadc.phy.ornl.gov/redbooks/redbooks.html)

Publically Available Bibliographic Data

• GAPHYOR (http://gaphyor.lpgp.u-psud.fr/)

• SWARM Data to unfold:

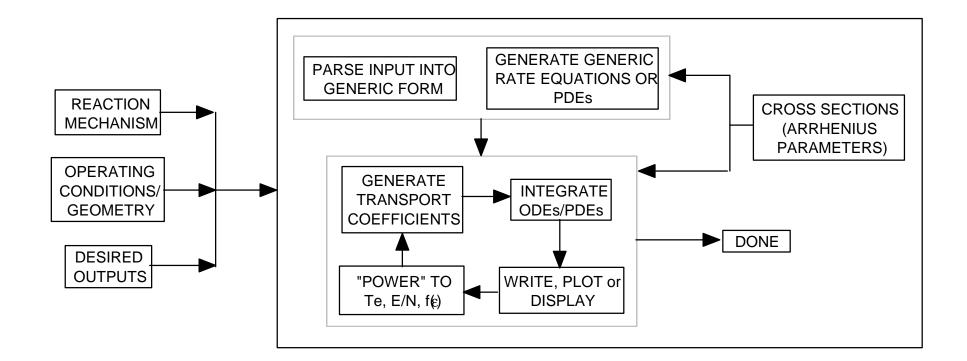
- Unfolding swarm data to obtain cross sections is not a quick process, but nevertheless is an extremely a valuable source of cross sections.
- Continue to collect all available swarm data to augment long term additions to your database. (Get a summer intern and a Boltzmann code.....)

SOURCES OF DATA: NEUTRAL CHEMISTRY

- Rate Coefficients:
 - NIST Chemical Kinetics Database (http://www.nist.gov/srd/nist17.htm)
 - International Journal of Chemical Kinetics (http://www.interscience.wiley.com/jpages/0538-8066/)
 - Journal of Physical Chemistry A (http://pubs.acs.org/journals/jpcafh/index.html)
 - Journal of Atmospheric Chemistry
 - Journal of Physical Chemistry Ref. Data (many, many compendia of rate coefficients for combustion and atmospheric chemistry)
- Reaction Mechanisms (Combustion literature)
 - Combustion and Flame (http://www.elsevier.com/inca/publications/store/5/0/5/7/3/6/)
 - International Journal of Chemical Kinetics

SOURCES OF DATA: NEUTRAL CHEMISTRY

- eg: R. Fournet, et al "Experimental and Modeling of Oxidation of Acetylene, Propyne, Allene and 1,3-Butadiene", Int. J. Chem. Kinet. 31, 361 (1999).
- AIAA Journal (http://www.aiaa.org/publications/journals.html)
- Models outside your application area which use the same species
 - Excimer lasers (XeCl, XeF, KrF good source for halogen data)
 - Metal vapor lasers and MHD (good source for metal atom data)
 - Atmospheric chemistry (suprisingly, for C-H-O-N and CI species)
- Collect everything that key individuals have ever published in the field for specific chemistries (e.g., Jerome Perrin for silane plasma chemistry)

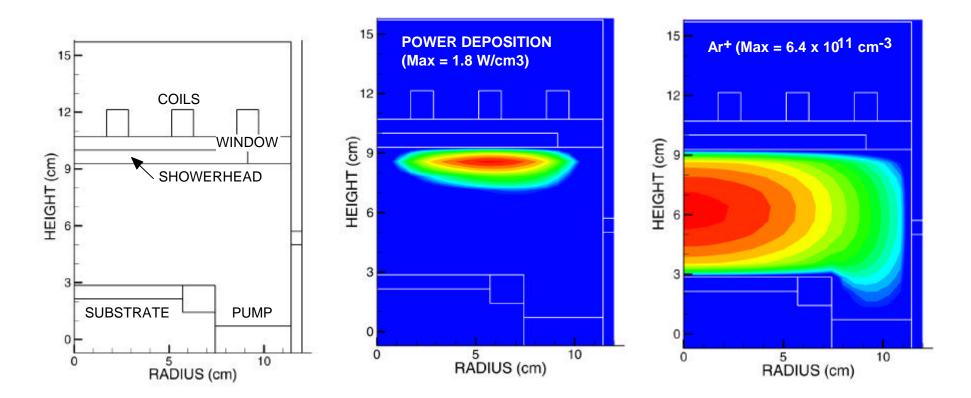

SOURCES OF DATA: ION MOLECULE AND ION TRANSPORT

- Mobilities and diffusivities vs E/N (or T(effective))
 - H. W. Ellis, At. Data Nucl. Data Tables 17, 177-210 (1976); 22, 179-217 (1978); 31, 113-151 (1984)
- Ion-Molecule Rate coefficients compendia.
 - D. L. Albritton, At. Data Nucl. Data Tables 22, 2 (1978)
 - •Y. Ikezoe, et. al. "Gas Phase Ion-Molecule Reaction Rate Constants Through 1986" (Mass Spectroscopy Society of Japan).
 - J. Phys. Chem. Ref. Data

University of Illinois Optical and Discharge Physics

GENERIC LOW PRESSURE PLASMA CHEMISTRY MODEL

• Your "toolbox" should hold a "generic" plasma chemistry model in which all parameters, chemistries and operating conditions are defined "from the outside" to facilitate rapid turnaround of reaction mechanisms.



• Defining the reaction mechanism should allow for rapid modifications in rates, processes and boundary conditions.

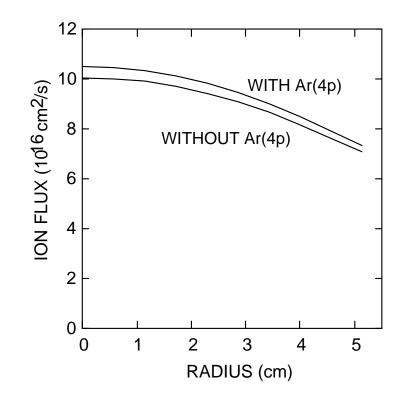
Species, Boundary conditions	CL2 CL2^ CL CL^ CL* > CL- SICL4 E	:	0 -1 0	;;;;;;;;;	70.0070.0035.50:535.5035.50:535.50170.005.444E-04	& & & & & & & & & & & & & & & & & & &	0.0 1.0 0.005 0.1 1.0 1.0 0.1 1.0 0.0 1.0]]]	1 [1 [1 [1 [1 [1 [1 [1 [1 [0.0 1.0 0.025 1.0 1.0 0.025 1.0 0.025 1.0 0.0	@CL2 @CL2 @SICL @CL @CL @SICL @SICL @E	1	
Reactions, Rate coefficients, Links to database	$E + CL2 > E + CL2 > E + CL2 > E + CL > CL + CL > CL + CL - CL + CL^{*}$	CL + CL2^ CL* + CL* + CL* + CL* + CL* + CL* + CL* + CL^ + CL^ + CL^ + CL^ - CL + > CL + > CL + > CL + CL + CL +	· CL · E · E · E · E · E · E · E · E	+ E + E + E + E CL + CL + CL + 2	CL2		$\begin{array}{c} 0.00\pm+00\\ 1.00\pm+00\\ 1.00\pm+05\\ 0.00\pm+00\\ 1.00\pm-07\\ 1.00\pm-07\\ 1.00\pm-07\\ 5.40\pm-32\\ 5.40\pm-10 \end{array}$;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	-0 -0 -1	.50 & .50 & .50 &	0.0 0.0 0.0 0.0 0.0 0.0	771 774 776 778 779 780 781 782 783 784 785 1 788] -1] -1] -1] -1] 1] 1	

- Commercial Products:
 - AURORA, Reaction Design, http://www.reactiondesign.com
 - KINEMA, Kinema Research and Software, http://www.sni.net/kinema/
- Literature Citations:
 - S. Ashida, C. Lee and M. A. Lieberman, "Spatially averaged (global) model of time modulated, high density argon plasmas", J. Vac. Sci. Technol. A, <u>13</u>, 2498 (1995)
 - C. Lee, D. B. Graves, M. A. Lieberman and D. W. Hess, "Global Model of plasma chemistry in a high density oxygen discharge", J. Electrochem. Soc. <u>141</u>, 1546 (1994)
 - E. Meeks and J. W. Shon, "Modeling of plasma-etch processes using well stirred reactor approximations and including complex gas-phase and surface reactions", Tran. Plasma Sci. <u>23</u>, 539 (1995)

• For demonstration and illustrative purposes, simulations will be performed in a small, inductively coupled plasma (ICP) reactor.

• Ar, 10 mTorr, 150 sccm, 400 W

DEVELOP A REACTION MECHANISM WHICH ALIGNS WITH WHAT YOU NEED TO KNOW


- The time required to develop a reaction mechanism scales with its size and complexity.
- The completeness of your reaction mechanism should correlate with the end product of your modeling activity.
- What do you really need to know and to what accuracy? What data is required to meet that goal?
- Example: The output of interest is uniformity of ion flux to the substrate.

Reaction Mechanism 1	Reaction Mechanism 2				
e, Ar(3s), Ar(4s), Ar(4p), Ar ⁺	e, Ar(3s), Ar(4s), Ar ⁺				

• How critical is Ar(4p) to "what I need to know" and, by implication, how important is it to know its cross sections (FOR THESE CONDITIONS!)

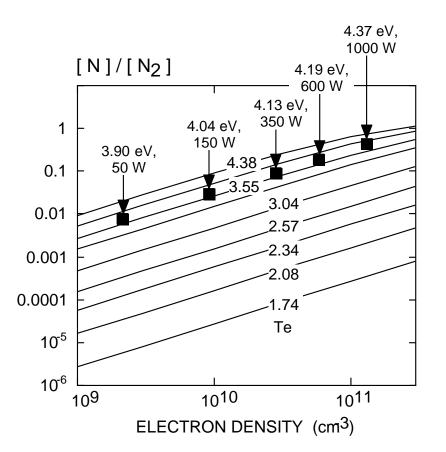
University of Illinois Optical and Discharge Physics

DEVELOP A REACTION MECHANISM WHICH ALIGNS WITH WHAT YOU NEED TO KNOW

• Ar, 10 mTorr, 400 W, 150 sccm,

 If all you are interested in is the ion flux to the substrate, and are willing to tolerate a 5-10% error, a simple reaction mechanism serves your purpose.

YOU GOTTA HAVE THIS DONE IN 3 DAYS!!!!!


MAKE BACK OF THE ENVELOPE ESTIMATES TO REFINE (LIMIT) YOUR REACTION MECHANISM

- You always know the upper and lower bounds of reaction rate coefficients.
 - Ionization rate coefficients are never much bigger than 10⁻¹⁰ cm³/s.
 - Momentum transfer rate coefficients are never much smaller than 10⁻¹⁰ cm³/s
- Given these bounds, you can make back-of-the-envelope estimates to determine how much detail is required in your reaction mechanism?
- Example: In a N₂ plasma, do you need to include N atoms in the reaction mechanism?

$$\frac{dN_2}{dt} = -n_e k_d N_2 + \frac{N_{20} - N_2}{t_r} = 0, \qquad \frac{dN}{dt} = n_e k_d N_2 + \frac{N}{t_r} = 0$$
$$\frac{N_{20}}{N_{20}} = \frac{2}{\frac{1}{n_e k_d t_r} + 1}$$

MAKE BACK OF THE ENVELOPE ESTIMATES TO REFINE (LIMIT) YOUR REACTION MECHANISM

- Simple scaling shows regions where large electron densities and moderate electron temperatures produce significant N₂ dissociation.
- HPEM simulations for N₂
 ICP plasmas confirm simple scaling.
- No need to include e-N processes for < 200-300 W.

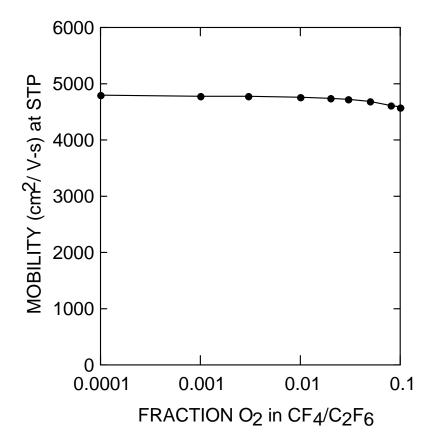
• N₂, 10 mTorr, 150 sccm (0.05 s residence time)

YOU GOTTA HAVE THIS DONE IN 3 DAYS!!!!!

1% of MOLECULE "A" IN A MIXTURE OF MOLECULES "C" AND "D" DOESN'T MATTER.....sometimes

- In large part, if molecules are large enough, momentum transfer and the power deposited into a given component of a molecular gas mixture scales with its mole fraction.
- For example, if analyzing the consequences of adding $1\% O_2$ to $CF_4/C_2F_6 = 50/50$, the incremental change in momentum transfer by O_2 is neglible.
- WARNING! Small admixtures of molecular gases mixtures having deep and pronounced Ramsauer momentum transfer can have significant effects.

[R. Nagpal and A. Garscadden, Appl. Phys. Lett. 64, 1626 (1994)]


- The important consequences of adding O₂ to CF₄/C₂F₆ will be generating species WHICH WOULD NOT HAVE OTHERWISE NOT BEEN THERE!
- These species are produced by INELASTIC processes (e.g., e + O₂ > O + O + e) or by excitation transfer (or chemical reactions) from the major mole fraction species.

1% of MOLECULE "A" IN A MIXTURE OF MOLECULES "C" AND "D" DOESN'T MATTER.....sometimes

• Example: Electron mobility vs O_2 fraction in $CF_4/C_2F_6 = 50/50$ at 10 Td

"The importance of O₂ in the gas mixture is the production of species which would not have otherwise been present...."

J. T. Verdeyen said something like that

GENERAL SCALING LAWS: IF YOU HAVE <u>NO OTHER</u> INFORMATION ION-ION NEUTRALIZATION

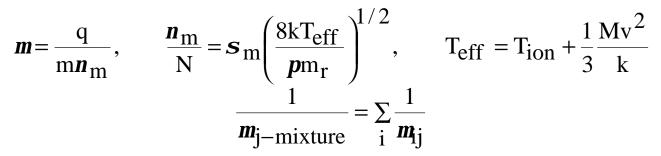
- All negative ions neutralize with all positive ions provided that $E_{IP} > E_{EA}$.
- At thermal energies (and low pressures) neutralization is non-associative.
- Simple scaling laws are available. For example,

$$\boldsymbol{s}(\boldsymbol{e}) = \frac{q^4}{4\boldsymbol{p}\boldsymbol{e}_0^2} \frac{1}{\Delta E^2} \left(1 + \frac{\Delta E}{\boldsymbol{e}}\right) F(\boldsymbol{e}), \qquad \Delta E = E_{I} - E_{A}$$

F = Landau - Zener transition probability

- [J. T. Moseley, R. E. Olson and J. R. Peterson, Case Studies in Atomic Physics, 4, 1, (1975)]
- IYMG (If You Must Guess), $k = 10^{-7} \text{ cm}^3 \text{s}^{-1}$

GENERAL SCALING LAWS: IF YOU HAVE <u>NO OTHER</u> INFORMATION ELECTRON-ION RECOMBINATION


 All molecular ions dissociatively recombine. If the electron temperature is not too low (< 300 K) or too high,

$$\mathbf{s}(\mathbf{e}) = \frac{\mathbf{s}_0}{\mathbf{e}}$$
 $\mathbf{k}(\mathbf{T}_e) = \frac{\mathbf{k}_0}{\mathbf{T}_e^{1/2}}$

- Diatomics: $s_o = 1.5 \times 10^{-16} \text{ cm}^2$ -eV. Polyatomic ions have larger s_o [J. B. A. Mitchell, Physics Reports 186, 215 (1990)]
- IYMG, $k = 10^{-7}/T_e(eV)^{1/2} \text{ cm}^3 \text{s}^{-1}$
- In low pressure plasmas (< 100's mTorr) recombination of atomic ions can generally be ignored unless plasma densities are > 10¹² cm⁻³.
 - IYMG Radiative Recombination: k = 5 x 10⁻¹³/T_e(eV)^{0.7} cm³s⁻¹ Collisional Radiative Recombination: k = 7 x 10⁻²⁷/T_e(eV)^{4.5} cm⁶s⁻¹
 [M. A. Biondi in "Principles of Laser Plasmas" edited by G. Bekifi (Wiley, New York, 1976)]

GENERAL SCALING LAWS: IF YOU HAVE <u>NO OTHER</u> INFORMATION MOBILITIES

• Heavy particle Mobilities (and Diffusion Coefficients)

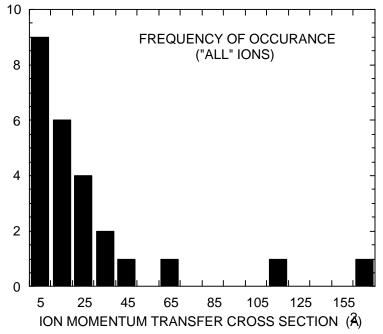
- <u>Neutrals</u>: s_m is given by Lennard Jones parameters [R. A. Svehla, "Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures" NASA Technical Report R-132, 1962]
- IYMG: Choose a LJ radius of a similar structured and sized molecule.

Large molecules		Sma	all Molecules	Small - Large Atoms		
HgBr ₂	5.080 A	N ₂	3.798 A	Н	2.708 A	
Hgl ₂	5.625	O ₂	3.467	CI	3.631	
C_2H_6	5.349	F ₂	3.357	Хе	4.047	

GENERAL SCALING LAWS: IF YOU HAVE <u>NO OTHER</u> INFORMATION MOBILITIES

- Use mixture rules from Hirschfelder, Curtiss and Bird "Molecular Theory of Gases and Liquids" (Wiley, New York, 1954) for additional accuracy.
- <u>lons</u>: All ions undergo symmetric charge exchange with their neutral. Assume momentum transfer is dominated by charge exchange. If you have the charge-exchange cross section, use it for momentum transfer. Otherwise, assume gas kinetic rates.
- For "Non-resonant" ion transport (e.g., Hg⁺ in He) s_m depends on the on the model of the interaction potential

[E. A. Mason and E. W. McDaniel, "Transport Properties of Ions in Gases" (Wiley, 1988)].


University of Illinois Optical and Discharge Physics

GENERAL SCALING LAWS: IF YOU HAVE <u>NO OTHER</u> INFORMATION MOBILITIES

• If you have NO additional information, consult H. W. Ellis et al, for analogous ion-gas combinations.

[H. W. Ellis, At. Data Nucl. Data Tables 17, 177-210 (1976); 22, 179-217 (1978); 31, 113-151 (1984)]

 With rare exceptions, at zero-field s_m range in 5-35 x 10⁻¹⁶ cm².

YOU GOTTA HAVE THIS DONE IN 3 DAYS!!!!!

GENERAL SCALING LAWS: IF YOU HAVE <u>NO OTHER</u> INFORMATION ION MOLECULE, PENNING AND EXCITATION TRANSFER

- If energetically allowed, charge transfer by positive ions to polyatomic molecules proceeds at the gas kinetic rate (there will always be a state available) and is dissociative.
 - Branchings are the same as electron impact at the IP of ion (if available) or estimated from appearance potentials of fragment ions from the parent molecule.

[S. G Lias et al, "Gas-Phase Ion and Neutral Thermochemistry", J. Phys. Chem. Ref. Data 17, Supplement 1, 1988]

- If energetically allowed, Penning processes occur about about 0.2 gas kinetic.
- Quenching of excited states by polyatomic atoms is equivalent to electronic excitation at the same energy and is dissociative.

GENERAL SCALING LAWS: IF YOU HAVE <u>NO OTHER</u> INFORMATION ELECTRON IMPACT IONIZATION AND EXCITATION

- Electron impact excitation and ionization cross sections are the most "species specific" of all data.
- On "casual inspection" it is difficult to predict or use analogy electron impact cross sections for complex molecules.
- So.....IF YOU MUST GUESS (IYMG)
- Use the same cross sections for fragments (CF₃ vs CF₄) until you REALLY feel really uncomfortable, and then deny you did it.
- At low gas pressures, only dissociative attachment is important for small molecules. Ignore 3 body processes (e.g., e + O₂ + M > O₂- + M)
 - Thermal attachment may occur if E_{EA} > E_{DISS} (e.g., F₂, Cl₂). Check the thermochemistry.
- Reduce threshold energies of excited species by vibrational or electronic energy

GENERAL SCALING LAWS: IF YOU HAVE <u>NO OTHER</u> INFORMATION ELECTRON IMPACT IONIZATION AND EXCITATION

- Electron impact ionization:
 - If you have the input, use the Kim cross sections (J. Chem. Phys <u>110</u>, 3811 (1999) or, if not, resort to Gryzinski cross sections (binary encounter).

$$\mathbf{s} = 4\mathbf{p}a_{0}^{2}\mathbf{x}_{n}\left(\frac{R}{I_{n}}\right)^{2}g(u), \quad g(u) = \frac{1}{u}\left(\frac{u-1}{u+1}\right)^{3/2}\left(1 + \frac{2}{3}\left(1 - \frac{2}{u}\right)\ln\left(2.7 + (u-1)^{1/2}\right)\right), \quad u = \frac{\mathbf{e}}{I_{n}}$$

[T. D. Mark and G. H. Dunn, "Electron Impact Ionization" (Springer-Verlag, New York, 1985)]

• Electron Imact Excitation: Born-Bethe formula (Drawin formulation) for optically allowed transition.

$$\boldsymbol{s}_{ij} = 4\boldsymbol{p}a_{o}^{2}\boldsymbol{x}_{n} \left(\frac{R}{E_{ij}}\right)^{2} f_{ij}\boldsymbol{a}_{ij} \left(\frac{u_{ij}-1}{u_{ij}^{2}}\right) \ln\left(1.25\boldsymbol{b}_{ij}u_{ij}\right), \quad u = \frac{\boldsymbol{e}}{E_{ij}}$$

YOU GOTTA HAVE THIS DONE IN 3 DAYS!!!!!

University of Illinois Optical and Discharge Physics

GECA9915

EXAMPLE: H₂O ADDITION TO CI₂/BCI₃ MIXTURES

- *Task:* We have a "working" Ar/Cl₂/BCl₃ process in an ICP reactor (10 mTorr, 150 W, 150 sccm). What are the consequences of H₂O addition?
- *Response:* What do you really want to know? How much H₂O addition?
- Refined Task: What are the consequences on ion flux to the substrate for up to 10% H₂O addition?

PROCEDURE:

- Point of departure:
 - Working Ar/Cl₂/BCl₃ reaction mechanism
 - Working H₂O reaction mechanism
 - Combine them....

University of Illinois Optical and Discharge Physics

EXAMPLE: H₂O ADDITION TO CI₂/BCI₃ MIXTURES

• Examine neutral chemistry for important "cross reactions" (NIST Database). Addition of H₂O adds possibility of H, OH, O, O₂, H₂.

H + CL2 > HCL + CL	:	2.00E-11 ;	1	!
CL + H2O > OH + HCL	:	2.79E-11 ; 0.0 &	8670.]1	!
O + CL2 > CLO + CL	:	8.00E-12 ; 0.0 &	1368.]1	!
OH + CL2 > HOCL + CL	:	1.40E-12 ; 0.0 &	900.]1	!
OH + CL > O + HCL	:	9.80E-12 ; 0.0 &	2860.]1	!

- HCI will be a major product....Obtain HCI reaction mechanism from XeCI laser model [e.g., Ohwa and Obara, J. Appl. Phys. 59, 32 (1986)] by adding HCI, HCI(v)
- Mobilities of Cl⁺, Cl_n⁺, BCl_n⁺ in H₂O, and OH⁺, H₂O⁺ in BCl_n, Cl_n are not known. Assume s_m = 50 A².
- Assume all uknown dissociative recombination have $k = 10^{-7}/T_e^{-1/2}$ cm⁻³/s.
- Assume all unknown ion-ion recombination have $k = 10^{-7} \text{ cm}^{-3}/\text{s}$.

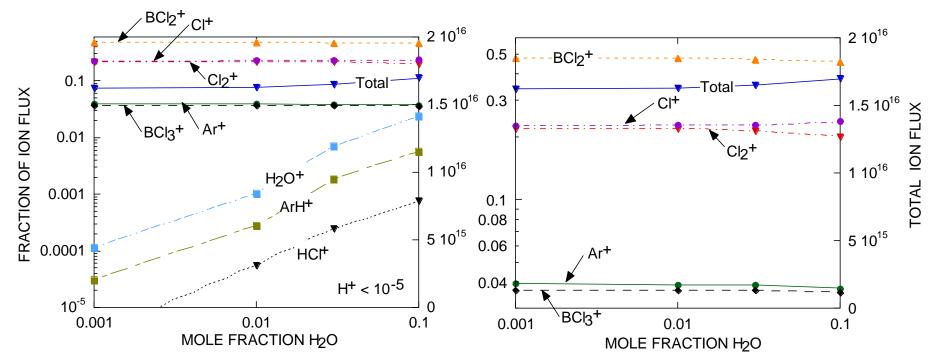
University of Illinois Optical and Discharge Physics

EXAMPLE: H₂O ADDITION TO CI₂/BCI₃ MIXTURES

- Charge exchange cross sections for Cl⁺, Cl_n⁺, BCl_n⁺ in H₂O, and OH⁺, H₂O⁺ in BCl_n, Cl_n are not known. Obtain thermochemistry from Lias et. al. and assume allowable reactions are gas kinetic.
- Ar/H₂O ion chemistry is known. Obtain from Ikezoe.

$H2O^{+} + CL2 > CL2^{+} + H2O$:	1.00E-10	;	1	!
$H2O^{+} + CL2 > CL2^{+} + H2O$:	1.00E-10	;	1	!
$H2O^{+} + BCL2 > BCL2^{+} + H2O$:	1.00E-10	;	1	!
$H2O^{+} + BCL3 > BCL3^{+} + H2O$:	1.00E-10	;	1	!
$CL^{+} + H2O > H2O^{+} + CL$:	1.00E-10	;	1	!
$HCL^{+} + CL2 > CL2^{+} + HCL$:	1.00E-10	;	1	!
$HCL^{+} + CL2 > CL2^{+} + HCL$:	1.00E-10	;	1	!
$HCL^{+} + BCL2 > BCL2^{+} + HCL$:	1.00E-10	;	1	!
$HCL^{+} + BCL3 > BCL3^{+} + HCL$:	1.00E-10	;	1	!
$CL^{+} HCL > HCL^{+} CL$:	1.00E-10	;	1	!
$AR^{+} H2O > ARH^{+} OH$:	0.50E-09	;	1	!
$AR^{+} + H2O > AR + H2O^{+}$:	1.50E-09	;	1	!
$AR^{+} HCL > ARH^{+} CL$:	1.28E-10	;	1	!
$AR^{+} HCL > HCL^{+} AR$:	1.00E-11	;	1	!

• Lennard Jones parameters are available from Svehla. Use standard combination rules for neutral transport coefficients from HCB.


YOU GOTTA HAVE THIS DONE IN 3 DAYS!!!!!

University of Illinois Optical and Discharge Physics

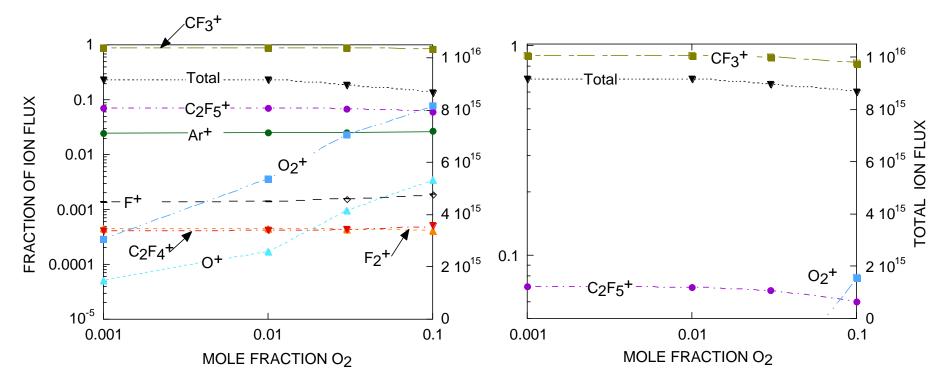
GECA9915

ION FLUX TO SUBSTRATE: CI₂/BCI₃/H₂O MIXTURES

Ar/Cl₂/BCl₃/H₂O = 10/45/45/x process in an ICP reactor (10 mTorr, 150 W, 150 sccm).

- Contribution of "new ions" to flux scales less than the "impurity" mole fraction due to lower rates of ionization of H₂O and depleting charge exchange reactions.....Small increase in total ion flux.
- Elapsed Time: 4 hours

University of Illinois Optical and Discharge Physics

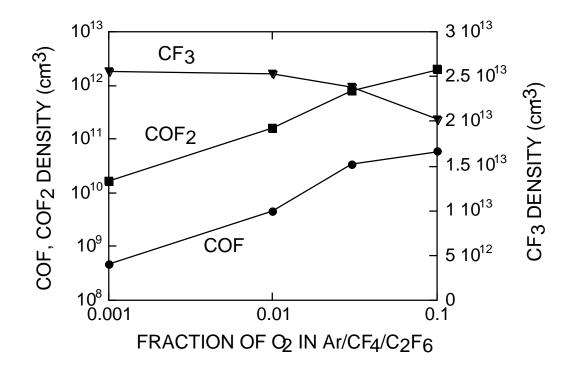

EXAMPLE: O₂ ADDITION TO CF₄/C₂F₆ MIXTURES

- *Task:* We have a "working" Ar/CF₄/C₂F₆ process in an ICP reactor (10 mTorr, 150 W, 150 sccm). What are the consequences of O₂ addition?
- *Response:* What do you really want to know? How much O₂ addition?
- *Refined Task:* What are the consequences on *ion flux to the substrate* for up to 10% O₂ and what new species are generated?

PROCEDURE:

- Point of departure:
 - Working Ar/CF₄/C₂F₆ reaction mechanism
 - Working O₂ reaction mechanism
 - Combine them....
- Follow same procedure as for Ar/Cl₂/BCl₃/H₂O with added benefit that others have looked at similar problems as this before...

Ar/CF₄/C₂F₆/O₂ = 10/45/45/x process in an ICP reactor (10 mTorr, 150 W, 150 sccm).



 Contribution of "new ions" to flux exceeds the "impurity" mole fraction due to higher rates of ionization of O₂ and favorable charge exchange reactions.....Small decrease in total ion flux.

University of Illinois Optical and Discharge Physics

"NEW SPECIES": CF₄/C₂F₆/O₂ MIXTURES

Ar/CF₄/C₂F₆/O₂ = 10/45/45/x process in an ICP reactor (10 mTorr, 150 W, 150 sccm).

- COF₂ and COF approach approximately 10% of the density of major radicals (e.g., CF₃).....
- Species which would have otherwise not been present....

• Elapsed Time: 4 hours

CONCLUDING REMARKS

- Scholarly assessment, analysis and investigation of plasma chemistries require timescales which often exceed industrial time scales.
- To respond to shorter timescales, strategies to assess new processes should be in place before the request is made .
- The most important component of this strategy is a well orchestrated "toolbox" which is rapidly adaptable to new chemistries.
- By leveraging and adding to existing reaction mechanisms and databases, simple scaling laws can often yield significant insight to complex chemistries.