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AGENDA
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• Introduction to Ionized Metal PVD and Hollow Cathode Magnetrons

• Description of Model

• Plasma properties of IMPVD of Cu using a HCM

• Comparison to Experiments

• Deposition and Target Erosion

• Concluding Remarks



COPPER INTERCONNECT WIRING
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• The levels of interconnect wiring in microelectronics will increase to 8-9
over the next decade producing unacceptable signal propogation delays.

• Innovative remedies such as copper wiring are being implemented.

Ref: IBM Microelectronics
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IONIZED METAL PHYSICAL VAPOR DEPOSITION (IMPVD)

CACEM98M03

• In IMPVD, a second plasma source is used to ionize a large fraction of the
  the sputtered metal atoms prior to reaching the substrate. 

• Typical Conditions:
 
    • 10-30 mTorr Ar buffer
    • 100s V bias on target
    • 100s W - a few kW ICP
    • 10s V bias on substrate
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IMPVD DEPOSITION PROFILES
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• In IMPVD, a large fraction of the atoms
  arriving at the substrate are ionized.

• Applying a bias to the substrate
  narrows the angular distribution of
  the metal ions.

• The anisotropic deposition
  flux enables deep vias
  and trenches to be uniformly
  filled.
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HOLLOW CATHODE MAGNETRONS
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•• Hollow Cathode Magnetrons (HCM) are typically cylindrical devices with
inverted metal cups and floating shields.  Production tools have 300 mm
substates.

MAGNETS

IRON PLATE

IRON RING

CATHODE

SHIELD 
(FLOATING)

SUBSTRATE 
(FLOATING)

SHIELD 
(GROUND)

GROUND

GAS 
INLET

PUMP
RADIUS (cm)

0 3 6 912 369 12
0

H
E

IG
H

T 
(c

m
)

10

5

15

20

25

35

30

• Typical Operating Conditions:

• Pressure:    5-10 mTorr

• B-field:        100-300 G atcathode

• Voltage:       300-400 V

• Substrate:   Floating or biased

• Buffer gas:  Ar, 50-100 sccm

• Power:         2-5 kW



HOLLOW CATHODE MAGNETRONS-IMPVD
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•• HCM - IMPVD devices use magnetic confinement in the cathode for high ion
densities and sputtering, and cusp B-fields to focus the plasma.
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HYBRID PLASMA EQUIPMENT MODEL
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PHYSICS MODELS USED IN HCM SIMULATIONS
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• Monte Carlo secondary electrons emitted from cathode

• Fluid bulk electrons  (Te from energy equation with Boltzmann derived
transport coefficients)

• Continuity, momentum and energy for all heavy species (multi-fluid, slip
and temperature jump boundary conditions)

• Long-mean-free path transport for sputtered atoms with sputter-heating

• Implicit Poisson solution simultaneous with continuity and momentum for
electrons

• Species in Model:

e, Ar, Ar(4s), Ar+, Cu(2S), Cu(2D), Cu(2P), Cu+
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DESCRIPTION OF SPUTTERING MODEL

PEUG99M03

• Energy of the emitted atoms (E) obeys the 
  cascade distribution, an approximation 
  to Thompson’s law for Ei ≈ 100’s eV:
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where

 Λ = 4m imT / m i + mT( )2

subscripts: b ~ binding, i ~ ion, T ~ target.

• The sampling of sputtered atom energy E 
  from the cascade distribution gives 

E =
EbΛE i RN

Eb + ΛE i 1− RN( )

  where RN is a random number in interval [0,1].
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HCM- Cu IMPVD: ELECTRON DENSITY, TEMPERATURE
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• E-Density
(6.6 x 1012 cm-3)

• E-Temperature
(4.8 eV)

• Electron densities in excess of
1012 cm-3 are generated inside and
in the throat of the cathode.

• Fractional ionizations are ≤≤ 10%.

• Electron temperatures peak at 4-5
eV in the cathode, and are a few
eV downstream.

• Ar, 6 mTorr, 150 sccm, 325 V,
   160 G



HCM- Cu IMPVD: ELECTRON SOURCES
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• E-beam
(3 x 1017 cm-3s-1)

• Bulk
(5 x 1018 cm-3s-1)

• Secondary electron emission and
beam ionization produce electron
sources in the cathode.

• Ionization in the bulk plasma,
however, is the major electron
source.

• Ar, 6 mTorr, 150 sccm, 325 V,
   160 G



HCM- Cu DENSITIES
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• Cu
(1.9 x 1013 cm-3)

• Cu+

(1.5 x 1012 cm-3)

• Neutral copper [Cu(2S) + Cu(2D)]
undergoes rapid ionization and
rarefaction in the throat of the
cathode.

• The majority of neutral copper is
in metastable Cu(2D).

• Fractional ionization of Cu in the
bulk is 10's %.

• Ar, 6 mTorr, 150 sccm, 325 V,
   160 G



HCM- GAS TEMPERATURE
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• Average Gas Temperature (max = 1530 K)

• Gas heating occurs dominantly by symmetric
charge exchange between Ar neutrals and
ions, and produces significant rarefaction.

• Slip between neutrals and disparate rates of
charge exchange produce differences in their
maximum temperatures:

Ar:  1546 K            Cu: 900 K

• Ar, 6 mTorr, 150 sccm, 325 V, 160 G



ELECTRON DENSITY AND TEMPERATURE vs EXPERIMENT
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• Electron Density • Electron Temperature

• Langmuir probe measurements of electron density (2.8 cm above
substrate) show densities and temperatures more highly peaked on axis.

• The model underpredicts the "jetting" of plasma from the throat of the
cathode which likely results from long-mean-free path effects not captured
by the ion model.

• Ar, 6 mTorr, 150 sccm, 325 V, 160 G



ELECTRON DENSITY, TEMPERATURE vs BIAS
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• HCM devices have significantly "less steep" I-V characteristics compared
to conventional magnetron discharges.

• For example, downstream plasma densities and power deposition scale
nearly linearly with bias.  Electron temperatures are weak functions of
bias.
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HCM- ION AND CU FLUXES TO THE SUBSTRATE
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• Ion flux to the substrate is
dominated by Ar+

• Direct non-thermal Cu
dominates the Cu fluxes to
the substrate.

• The Cu flux is 25-30%
ionized.

• Ar, 6 mTorr, 150 sccm, 325 V, 160 G



Cu DEPOSITION RATE
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• Cu Deposition Rate (A/min)

• The off-axis peak in direct
sputter flux produces an off-
axis peak in the deposition
rate.

• Ar, 6 mTorr, 150 sccm, 325 V, 160 G



TARGET EROSION
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• Magnetron trapping and the resulting large ion fluxes to the target occurs
at the side walls.

• Net deposition of sputtered Cu occurs on the end walls while the side
walls experience net erosion.

• Ar, 6 mTorr, 150 sccm, 325 V, 160 G



CONCLUDING REMARKS
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• Hollow Cathode Magnetrons (HCM) are capable of producing metal
deposition with plasma densities of 1012 cm-3.

• The HCM operates somewhat as a remote plasma source with moderate
electron temperatures near the substrate compared to the cathode interior.

• The configuration of the magnetic field is important in at least two
respects:

• Jetting of plasma at throat of cathode
• Erosion profile inside the cathode

• Small HCMs having higher power densities experience significant
rarefaction which ultimately limits their capability to produce high plasma
densities and deposition rates.

• Large HCMs (10-20 cm diameter) which avoid these problems have been
designed and built based on these scalings studies.


