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PULSED ICP PLASMAS
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• Pulsed plasmas

• Damage free plasma etching with better uniformity and anisotropy

• Improved etch selectivity by modifying the ratio of chemical species

• Additional controllable degrees of freedom : Duty cycle and
modulation frequency

• Reduce charge buildup on wafers and suppress notching

• Reduced particle generation in the plasma

• Current models for investigating pulsed operation are typically
    global or 1-dimensional

• Difficult to resolve long-term transients in multi-dimensional plasma
equipment models

• Moderately parallel algorithms for 2-dimensional hybrid models were
developed to investigate long term transients.



DESCRIPTION OF THE PARALLEL HYBRID MODEL
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• The HPEM, a modular simulator,
was parallelized by employing a
shared memory programming
paradigm on a Symmetric Multi-
Processor (SMP) machine.

• The Electromagnetics, Electron
Monte Carlo and Fluid-kinetics
Modules are simultaneously
executed on three processors.

•  The variables updated in different
modules are immediately made
available through shared memory
for use by other modules.

• Dynamic load balancing is
implemented to equal the tasks
on different processors.
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GOVERNING EQUATIONS IN HPEM
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• Continuity (heavy species) :

• Momentum (heavy species) :

• Energy (heavy species) :

• Drift-diffusion (electron) :
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GOVERNING EQUATIONS IN HPEM (continued)
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• Electrons:
• Energy    ( ) lossheatingee PPTTk −=Γ⋅∇+∇⋅∇

• Monte Carlo Simulation

• Poisson's equation:
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• Wave equation:

• Vector potential:
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REACTOR GEOMETRY AND SIMULATION CONDITIONS
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• Reactor geometry taken
from Malyshev et. al.*

• Base case conditions:

• Peak ICP power: 600 W

• rf bias: 250 V, 10 MHz

• PRF: 10 kHz

• Pressure: 10 mTorr

• Gas flow rate: 100
sccm

• Cl2, Ar/Cl2
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    *M. V. Malyshev, V. M. Donnelly, Plasma Sources Sci. Technol. 9, 353 (2000)



DYNAMICS OF PULSED PLASMAS: ELECTRON DENSITY
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• ICP power at 10 MHz (rf) is pulsed at
PRF of 10 kHz.

• Several pulses are required to attain
periodic steady state

• [e] attains steady state value in the
late activeglow corresponding to cw
operation

• [e] decays several orders of
magnitude, as the electrons are lost
due to dissociative attachment

• With substrate bias, [e] attains a
steady state value in the late after
glow corresponding to capacitive
mode
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DYNAMICS OF PULSED PLASMAS:
ELECTRON TEMPERATURE
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• Te peaks at the leading edge, as
the power deposition occurs into
a smaller inventory of electrons

• No substrate bias results in higher
peak Te, as the electrons decay
away several orders of magnitude
lower in the late afterglow

• Te is similar during late activeglow
and early afterglow period

• With substrate bias, Te increases
in the late afterglow due to sheath
heating

• Electrons thermalize to gas
temperature without substrate bias

0

2.5

5

7.5

10

Time (µs)
0 50 100 150 200

NO BIAS

BIAS BIAS

NO BIAS

E
le

ct
ro

n 
Te

m
pe

ra
tu

re
 (

eV
)

• Electron Temperature



VALIDATION OF THE MODEL: PHYSICS
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• Model results compare well with experiments*

• With substrate bias, Te rises to values above the steady state value
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         * M. V. Malyshev, V. M. Donnelly, Plasma Sources Sci. Technol. 9, 353 (2000)



SHEATH HEATING IN PULSED PLASMAS WITH SUBSTRATE
BIAS
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• Sheath heating scales with the square of the sheath speed, vs

• Sheath thickness λλ  scales as ne
-1/2

• Sheath speed vs ≈≈ ωω λλ

• Total sheath heating H, therefore scales as  H ∼∼  vs
2ne 

  and is not a
function of electron density

• Specific heating rate (per electron),  h, scales as H/ne ∼∼ 1/ne

• As the electron density decays, primarily by dissociative attachment to Cl2,
the sheath thickness λλ  increases

• Oscillating sheath produces a net increase in specific heating rate h and
hence an increase in (or slowing in rate of decrease in)  Te



Cl2 PULSED PLASMAS WITH AND WITHOUT RF BIAS:
ELECTRON DENSITY
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• The peak [e] migrates to below the coils
during "power-on" where the source is
maximum.

• [e] is similar with and without substrate
bias during the activeglow and early
afterglow phase.

• As the power is turned off,  in the early
afterglow ambipolar losses dominate
over generation of electrons.

• In the late afterglow, sheath heating
dominates and the plasma transitions
from inductively coupled to capacitively
coupled mode with substrate bias.
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Cl2 PULSED PLASMAS WITH AND WITHOUT RF BIAS:
ELECTRON TEMPERATURE
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• The peak in Te at the leading edge is
due to power deposition into smaller
inventory of electrons.

• Sheath heating prevails, even after 10
µµs into the power-on period, owing to
low ne.

• At 45 µµs, the Te profile looks similar to
no substrate bias case

• After 25 µµs into the power-off period,
sheath heating begins

• Te increases in the late afterglow, as
power is deposited into electrons near
the substrate by oscillating sheath. 0.01 eV 12 eV
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EFFECT OF BIAS VOLTAGE AND ICP POWER ON ONSET TIME
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• As the bias voltage is increased, the
onset time to the capacitive coupling
mode, ττc, decreases.

• This is attributed to the greater
sheath heating at higher bias
voltages.

• As the ICP power is varied from 450
W to 600 W, ττc   increases as the peak
electron density in the late active
glow is higher (thinner sheath).

• At higher ICP powers, the plasma is
more dissociating and less attaching,
which increases the [e] in the late
active glow and increases ττc.

• Cl2 pulsed plasma
• 10 mTorr, 100 sccm
• PRF: 10 kHz
• Duty cycle: 50%
• Bias: 250 V
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EFFECT OF GAS MIXTURES ON ONSET TIME
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• As the Ar fraction is increased, ττc

increases significantly.

• For Ar/Cl2 =40/60, ττc is longer than the
pulse off time, due to the higher [e] in
afterglow (thinner sheath).

•  As sheath heating is reduced,
negative ions can be extracted during
the pulse off period.

• Bias voltage, frequency and feedstock
composition need to be optimized to
investigate the possibility of negative
ion extraction with substrate bias.

• Ar/Cl2 pulsed plasma
• 450 W, 10 mTorr
• 100 sccm
• PRF: 10 kHz
• Duty cycle: 50%
• Bias: 250 V
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CONCLUSIONS
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• A new 2-D hybrid model was developed to address transients based on
moderate computational parallelism.

• Computational studies were performed for pulsed operation of Cl2 and
Ar/Cl2 ICPs.

• Te at the leading edge is nearly twice the steady state value.

• In electronegative plasmas, electron-ion plasma in the activeglow
becomes ion-ion plasma in the afterglow.

• For pulsed Cl2 plasmas with continuous substrate bias, sheath heating
was observed to be predominant in the late afterglow.

• The ττc increases with ICP power as the plasma is more dissociated in the
late activeglow and it takes more time for electron density to decay away.

• The extraction of negative ions in the afterglow is difficult with a
continuous substrate bias as the sheaths typically do not collapse.


