IEEE Pulsed Power / Plasma Science Conference June 17 - 22, 2001 Las Vegas, Nevada

2-DIMENSIONAL MODELING OF PULSED PLASMAS WITH AND WITHOUT SUBSTRATE BIAS USING MODERATE PARALLELISM*

Pramod Subramonium** and Mark J. Kushner*** **Department of Chemical Engineering ***Department of Electrical and Computer Engineering University of Illinois Urbana, IL 61801

> email: subramon@uiuc.edu mjk@uiuc.edu

*Work supported by SRC, NSF and AFOSR/DARPA

AGENDA

- Introduction
- Description of the moderately parallel model
- Validation
- Properties of Pulsed Cl₂ Plasmas
 - With and without rf substrate bias
 - Bias voltage
 - Feedstock composition
- Conclusions

- Pulsed plasmas
 - Damage free plasma etching with better uniformity and anisotropy
 - Improved etch selectivity by modifying the ratio of chemical species
 - Additional controllable degrees of freedom : Duty cycle and modulation frequency
 - Reduce charge buildup on wafers and suppress notching
 - Reduced particle generation in the plasma
- Current models for investigating pulsed operation are typically global or 1-dimensional
- Difficult to resolve long-term transients in multi-dimensional plasma equipment models
- Moderately parallel algorithms for 2-dimensional hybrid models were developed to investigate long term transients.

DESCRIPTION OF THE PARALLEL HYBRID MODEL

- The HPEM, a modular simulator, was parallelized by employing a shared memory programming paradigm on a Symmetric Multi-Processor (SMP) machine.
- The Electromagnetics, Electron Monte Carlo and Fluid-kinetics Modules are simultaneously executed on three processors.
- The variables updated in different modules are immediately made available through shared memory for use by other modules.
- Dynamic load balancing is implemented to equal the tasks on different processors.

• Continuity (heavy species) :

$$\frac{\partial \mathbf{N}_{i}}{\partial t} = \nabla \cdot \left(\mathbf{N}_{i} \vec{\mathbf{v}}_{i} \right) + \mathbf{S}_{i}$$

• Momentum (heavy species) :

$$\frac{\partial (\mathbf{N}_{i} \vec{\mathbf{v}}_{i})}{\partial t} = \frac{\mathbf{q}_{i}}{\mathbf{m}_{i}} \mathbf{N}_{i} \left(\vec{\mathbf{E}}_{s} + \vec{\mathbf{v}}_{i} \times \vec{\mathbf{B}}_{s} \right) - \frac{1}{\mathbf{m}_{i}} \nabla \mathbf{P}_{i} - \nabla \cdot \left(\mathbf{N}_{i} \vec{\mathbf{v}}_{i} \vec{\mathbf{v}}_{i} \right) - \nabla \cdot \overline{\overline{\tau}}_{i} + \sum_{j} \mathbf{N}_{i} \mathbf{N}_{j} \mathbf{k}_{ij} \left(\vec{\mathbf{v}}_{j} - \vec{\mathbf{v}}_{i} \right)$$

• Energy (heavy species) :

$$\frac{\partial}{\partial t} \left(\frac{3}{2} N_i k_B T_i \right) = \frac{N_i q_i^2 \mathbf{n}_i}{m_i \left(\mathbf{n}_i^2 + \mathbf{w}^2 \right)} E^2 + \frac{N_i q_i^2}{m_i \mathbf{n}_i} E_s^2 - \nabla \cdot \left(\frac{5}{2} k_B T_j \mathbf{j}_i - \mathbf{l}_i \nabla T_i \right) \\ + \sum_i 3 \frac{m_{ij}}{m_i + m_j} N_i N_j \mathbf{n}_{ij} k_B (T_j - T_i) \pm \sum_i 3 N_i N_j R_{ij} k_B T_j$$

• Drift-diffusion (electron) :

$$\frac{\partial n_{e}}{\partial t} = \nabla \cdot \left(n_{e} \overline{\overline{\mu}}_{e} E_{s} + \overline{\overline{D}}_{e} \nabla n_{e} \right) + S_{e}$$

University of Illinois Optical and Discharge Physics

ICOPS01_PRAMOD_04

GOVERNING EQUATIONS IN HPEM (continued)

- Electrons:
 - Energy $\nabla \cdot k \nabla T_{e} + \nabla \cdot (\Gamma T_{e}) = P_{heating} P_{loss}$
 - Monte Carlo Simulation

$$\frac{d\vec{v}}{dt} = \frac{q_e}{m_e} \left(\vec{E} + \vec{v} \times \vec{B} \right) \qquad \frac{d\vec{r}}{dt} = \vec{v} \qquad v_i = \left(\frac{2\varepsilon_i}{m_e} \right)^{\frac{1}{2}} \sum_{j,k} \sigma_{ijk} N_j$$

• Poisson's equation:

$$\nabla \cdot \varepsilon \nabla \Phi(t + \Delta t) = \rho(t) + \frac{d\rho(t)}{t} \cdot \Delta t = \rho(t) + \sum_{i} q_{i} \Delta t [-\nabla \cdot \vec{\varphi}_{i} + S_{i}]$$

• Wave equation:

$$\nabla \cdot \frac{1}{\boldsymbol{m}} \nabla \mathbf{E} = \frac{\partial^2 (\boldsymbol{e}_0 \mathbf{E})}{\partial t^2} + \frac{\partial (\overline{\boldsymbol{s}} \mathbf{E} + \mathbf{J}_0)}{\partial t}$$

• Vector potential:

$$\nabla \times \frac{1}{m} \nabla \times \mathbf{A} = \mathbf{j}_B \qquad \mathbf{B}_s = \nabla \times \mathbf{A}$$

University of Illinois Optical and Discharge Physics

1

ICOPS01_PRAMOD_05

REACTOR GEOMETRY AND SIMULATION CONDITIONS

- Reactor geometry taken from Malyshev et. al.*
- Base case conditions:
 - Peak ICP power: 600 W
 - rf bias: 250 V, 10 MHz
 - PRF: 10 kHz
 - Pressure: 10 mTorr
 - Gas flow rate: 100
 sccm
 - Cl₂, Ar/Cl₂

*M. V. Malyshev, V. M. Donnelly, Plasma Sources Sci. Technol. 9, 353 (2000)

DYNAMICS OF PULSED PLASMAS: ELECTRON DENSITY

- ICP power at 10 MHz (rf) is pulsed at PRF of 10 kHz.
- Several pulses are required to attain periodic steady state
- [e] attains steady state value in the late activeglow corresponding to cw operation
- [e] decays several orders of magnitude, as the electrons are lost due to dissociative attachment
- With substrate bias, [e] attains a steady state value in the late after glow corresponding to capacitive mode

Electron Density

• Cl₂, 10 mTorr, 600 W, 10 MHz, 10 kHz/50%

DYNAMICS OF PULSED PLASMAS: ELECTRON TEMPERATURE

- T_e peaks at the leading edge, as the power deposition occurs into a smaller inventory of electrons
- No substrate bias results in higher peak T_e, as the electrons decay away several orders of magnitude lower in the late afterglow
- T_e is similar during late activeglow and early afterglow period
- With substrate bias, T_e increases in the late afterglow due to sheath heating
- Electrons thermalize to gas temperature without substrate bias

• Electron Temperature

- Model results compare well with experiments*
- With substrate bias, T_e rises to values above the steady state value

* M. V. Malyshev, V. M. Donnelly, Plasma Sources Sci. Technol. 9, 353 (2000)

SHEATH HEATING IN PULSED PLASMAS WITH SUBSTRATE BIAS

- Sheath heating scales with the square of the sheath speed, v_s
- Sheath thickness I scales as n_e^{-1/2}
- Sheath speed v_s » wl
- Total sheath heating H, therefore scales as H ~ v_s²n_e and is not a function of electron density
- Specific heating rate (per electron), h, scales as H/n_e ~ 1/n_e
- As the electron density decays, primarily by dissociative attachment to Cl₂, the sheath thickness 1 increases
- Oscillating sheath produces a net increase in specific heating rate h and hence an increase in (or slowing in rate of decrease in) T_e

CI₂ PULSED PLASMAS WITH AND WITHOUT RF BIAS: ELECTRON DENSITY

- The peak [e] migrates to below the coils during "power-on" where the source is maximum.
- [e] is similar with and without substrate bias during the activeglow and early afterglow phase.
- As the power is turned off, in the early afterglow ambipolar losses dominate over generation of electrons.
- In the late afterglow, sheath heating dominates and the plasma transitions from inductively coupled to capacitively coupled mode with substrate bias.

CI₂ PULSED PLASMAS WITH AND WITHOUT RF BIAS: ELECTRON TEMPERATURE

- The peak in T_e at the leading edge is due to power deposition into smaller inventory of electrons.
- Sheath heating prevails, even after 10
 ms into the power-on period, owing to low n_e.
- At 45 ms, the T_e profile looks similar to no substrate bias case
- After 25 ms into the power-off period, sheath heating begins
- T_e increases in the late afterglow, as power is deposited into electrons near the substrate by oscillating sheath.

EFFECT OF BIAS VOLTAGE AND ICP POWER ON ONSET TIME

- As the bias voltage is increased, the onset time to the capacitive coupling mode, t_c, decreases.
- This is attributed to the greater sheath heating at higher bias voltages.
- As the ICP power is varied from 450 W to 600 W, t_c increases as the peak electron density in the late active glow is higher (thinner sheath).
- At higher ICP powers, the plasma is more dissociating and less attaching, which increases the [e] in the late active glow and increases t_c.

- Cl₂ pulsed plasma
- 10 mTorr, 100 sccm
- PRF: 10 kHz
- Duty cycle: 50%
- Bias: 250 V

EFFECT OF GAS MIXTURES ON ONSET TIME

- As the Ar fraction is increased, t_c increases significantly.
- For $Ar/Cl_2 = 40/60$, t_c is longer than the pulse off time, due to the higher [e] in afterglow (thinner sheath).
- As sheath heating is reduced, negative ions can be extracted during the pulse off period.
- Bias voltage, frequency and feedstock composition need to be optimized to investigate the possibility of negative ion extraction with substrate bias.

- Ar/Cl₂ pulsed plasma
- 450 W, 10 mTorr
- 100 sccm
- PRF: 10 kHz
- Duty cycle: 50%
- Bias: 250 V

Optical and Discharge Physics

- A new 2-D hybrid model was developed to address transients based on moderate computational parallelism.
- Computational studies were performed for pulsed operation of Cl₂ and Ar/Cl₂ ICPs.
- T_e at the leading edge is nearly twice the steady state value.
- In electronegative plasmas, electron-ion plasma in the activeglow becomes ion-ion plasma in the afterglow.
- For pulsed Cl₂ plasmas with continuous substrate bias, sheath heating was observed to be predominant in the late afterglow.
- The t_c increases with ICP power as the plasma is more dissociated in the late activeglow and it takes more time for electron density to decay away.
- The extraction of negative ions in the afterglow is difficult with a continuous substrate bias as the sheaths typically do not collapse.