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INTRODUCTION
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• Nitrogen oxides (NO, NO2) - NOX, are one of the six major pollutants
identified by the EPA, others being CO, Pb, SOX, volatile matter and
particulates.  All emissions have decreased except for NOx (EPA, 1998).

• Harmful effects of NOX

• Acid deposition

• Formation of ozone

• Eutrophication of water bodies

• Inhalable fine particles

• Visibility degradation
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PLASMA REMEDIATION OF NOX USING DBDs
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• Dielectric barrier discharges (DBDs) are well suited for generation of gas-
phase radicals at atmospheric pressures.

• Electron impact processes in DBDs produce radicals and ions which
initiate the plasma chemistry.
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DESCRIPTION OF GLOBAL-KIN
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• GLOBAL-KIN is a spatially homogeneous plasma chemistry simulation
coupled with circuit and surface reaction modules.

• The model uses a lookup table generated by an offline Boltzmann solver to
obtain the e-impact reaction rate coefficients.
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OPERATING CONDITIONS
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• Typical diesel exhausts contain N2, O2 (excess air); H2O, CO2 (products)
and trace amounts of NO, CO, H2 and unburned hydrocarbons (UHCs).

• To simulate actual exhausts, we have used propane (C3H8) and propene
(C3H6) as representative of the UHCs.

• Inlet gas composition

N2/O2/H2O/CO2=78/8/6/7 NO=260 ppm, CO=400 ppm, H2=133 ppm
C3H6=500 ppm , C3H8=175 ppm

• T=180 oC, P=1atm
τ = residence time of exhaust in DBD = 0.2 s



REACTION MECHANISM: NO-C3H6
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• C3H6 reactions are initiated by O and OH.

• Peroxy radicals formed from OH-initiated reactions with propene, oxidize
NO to NO2.

• NOx is also converted to other organic nitrates and nitrites, but most of the
initial NOx (NO) is primarily oxidized to NO2.
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REACTION MECHANISM: NO-C3H8
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• The initiating reaction with propane is an abstraction by OH and the resulting
radicals then consume O2 to form the peroxy radicals.

• These peroxy radicals then react with NO to convert it to NO2.
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SOOT PARTICLES – EFFECT ON NOX REMEDIATION
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• Soot particles found in diesel exhausts are typically 100 nm and containing
C/H/O=89/1/10.

• The radicals produced in the plasma diffuse to the soot surface and react.

O + Su → Oadsorbed → CO
OH + Su → OHadsorbed → CO + H2

NO2 + Su → NO2 (adsorbed) → NO + CO
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SOOT OXIDATION MODEL
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• Region surrounding soot is
divided into two zones.
• Diffusion regime
• Homogeneous Bulk

Plasma

• Species that react on the
soot surface diffuse
through the boundary layer.

• Boundary layer thickness,
δ, is obtained from the
Reynolds number.  For low
Re, δ ≈ ds/2.

• The diffusing species have
a linear profile in the
diffusion regime.

δ

Homogeneous 
Bulk Plasma

ds

ns-g

ns-s

Diffusion 
Regime

Boundary 
layer  
thicknessOH, O, NO2CO 

NO

SOOT

d sp

Individual 
spherules



PLASMA CONDITIONS : ne, Te, [N], [OH], [O]
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• Peak ne ≈ 1013 cm-3 and Te ≈ 3 eV with Edep ≈ 38 J/L.

• Electron impact dissociation of N2, O2 and H2O produce N, O and OH
respectively.
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NOX REMEDIATION : SINGLE PULSE
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• With a single pulse, exit NO densities are high because of the depletion of
O3 and peroxy radicals by the time of desorption of NO2(ads).

NO +O3 (or peroxies) → NO2 → NO2(ads) → NO
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NOX REMEDIATION : MULTIPLE PULSE
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• With multiple pulses, NO is converted to NO2 by O3 and peroxy radicals
produced during each pulse.

NO +O3 → NO2 + O2

• The rate of adsorption of NO2 being higher than the rate of desorption, the
NOx remains adsorbed on the surface of soot.
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EFFECT OF ENERGY DEPOSITION
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• For a single pulse, exit NO densities are higher.  Most of the adsorbed NO2
desorbs back as NO.  This does not happen in the case of multiple pulses
because of the shorter interpulse time for NO2 desorption.

• With a single pulse, the peroxy radicals which consume NO are lost by the
time NO is regenerated from NO2 and so, exit NOx is mainly NO.
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EFFECT OF ENERGY DEPOSITION: HNO2 – SP vs. MP
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• HNO2 is produced by the reaction
of NO with OH and by HO2 with
NO2.

NO + OH + M → HNO2 + M (1)
NO2 + HO2 → HNO2 + O2 (2)

• With a single pulse, most of the
HO2 is consumed by the time NO2
is formed and hence HNO2 is
mainly produced by reaction (1).

• NO2 densities are higher with
multiple pulses.  HO2 radicals are
produced during each pulse.
Hence, reaction (2) also
contributes to HNO2 production.
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SOOT OXIDATION

AICHE-01-14

          University of Illinois
  Optical and Discharge Physics

• With increasing energy deposition,
the diameter of the soot decreases
due to the oxidation by NO2.

NO2+ NO2 + NO + CO

• At higher energies, the final
diameter of soot increases because
the density of NO2 decreases due to
the increased conversion to
products such as HNO2, CH3ONO2.

NO2 + HO2 → HNO2 + O2
NO2 + CH3O + M→ CH3ONO2 + M
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• Note that the oxidation of soot is partial and results in CO and not CO2.
• CO – poisonous
• CO2 – greenhouse gas



MODIFICATION OF PLASMA CHEMISTRY BY SOOT
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• Soot affects the overall plasma chemistry by affecting the densities of
OH, HO2, NO and NO2.
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CONCLUDING REMARKS
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• Plasma remediation of NOx, by itself is not sufficient to completely remove
NOx.

• Soot chemistry significantly affects the NOx composition in plasma
remediation of NOx.

• Soot can be oxidized by plasma and as high as 30% soot removal can be
achieved at 60 J/L.

• Multiple pulse input results in apparent NOx removal because of the
increased adsorption onto the soot surface.

• With single pulse energy deposition, the exit-NOx is primarily NO because
of the reconversion of NO2 to NO on soot surface.




