EFFECT OF MULTIPLE PULSES ON THE HETEROGENEOUS AND HOMOGENEOUS CHEMISTRY DURING THE PLASMA REMEDIATION OF NO_X AND OXIDATION OF SOOT USING DIELECTRIC BARRIER DISCHARGES^{*}

<u>Rajesh Dorai</u> and <u>Mark J. Kushner</u> University of Illinois Deparment of Electrical and Computer Engineering Urbana, IL 61801

Khaled Hassouni

LIMHP, CNRS-UPR1311, Universite Paris Nord, Villetaneuse, France.

Email : dorai@uiuc.edu mjk@uiuc.edu hassouni@limhp.univ-paris13.fr

http://uigelz.ece.uiuc.edu

Work supported by Ford Motor Company and NSF (CTS99-74962)

- Nitrogen oxides (NO, NO₂) NO_x, are one of the six major pollutants identified by the EPA, others being CO, Pb, SO_x, volatile matter and particulates. All emissions have decreased except for NO_x (EPA, 1998).
- Harmful effects of NO_X
 - Acid deposition
 - Formation of ozone
 - Eutrophication of water bodies
 - Inhalable fine particles
 - Visibility degradation

PLASMA REMEDIATION OF NO_X USING DBDs

- Dielectric barrier discharges (DBDs) are well suited for generation of gasphase radicals at atmospheric pressures.
- Electron impact processes in DBDs produce radicals and ions which initiate the plasma chemistry.

- GLOBAL-KIN is a spatially homogeneous plasma chemistry simulation coupled with circuit and surface reaction modules.
- The model uses a lookup table generated by an offline Boltzmann solver to obtain the e-impact reaction rate coefficients.

OPERATING CONDITIONS

- Typical diesel exhausts contain N₂, O₂ (excess air); H₂O, CO₂ (products) and trace amounts of NO, CO, H₂ and unburned hydrocarbons (UHCs).
- To simulate actual exhausts, we have used propane (C₃H₈) and propene (C₃H₆) as representative of the UHCs.
- Inlet gas composition

 $N_2/O_2/H_2O/CO_2=78/8/6/7$ NO=260 ppm, CO=400 ppm, H₂=133 ppm $C_3H_6=500$ ppm , $C_3H_8=175$ ppm

T=180 °C, P=1atm
τ = residence time of exhaust in DBD = 0.2 s

- C₃H₆ reactions are initiated by O and OH.
- Peroxy radicals formed from OH-initiated reactions with propene, oxidize NO to NO₂.
- NO_x is also converted to other organic nitrates and nitrites, but most of the initial NO_x (NO) is primarily oxidized to NO₂.

- The initiating reaction with propane is an abstraction by OH and the resulting radicals then consume O₂ to form the peroxy radicals.
- These peroxy radicals then react with NO to convert it to NO₂.

SOOT PARTICLES – EFFECT ON NO_X REMEDIATION

- Soot particles found in diesel exhausts are typically 100 nm and containing C/H/O=89/1/10.
- The radicals produced in the plasma diffuse to the soot surface and react.

SOOT OXIDATION MODEL

- Region surrounding soot is divided into two zones.
 - Diffusion regime
 - Homogeneous Bulk Plasma
- Species that react on the soot surface diffuse through the boundary layer.
- Boundary layer thickness, δ , is obtained from the Reynolds number. For low *R*e, $\delta \approx d_s/2$.
- The diffusing species have a linear profile in the diffusion regime.

- Peak $n_e \approx 10^{13}$ cm⁻³ and $T_e \approx 3$ eV with $E_{dep} \approx 38$ J/L.
- Electron impact dissociation of N₂, O₂ and H₂O produce N, O and OH respectively.

 With a single pulse, exit NO densities are high because of the depletion of O₃ and peroxy radicals by the time of desorption of NO_{2(ads)}.

NO +O₃ (or peroxies) \rightarrow NO₂ \rightarrow NO_{2(ads)} \rightarrow NO

 With multiple pulses, NO is converted to NO₂ by O₃ and peroxy radicals produced during each pulse.

$$NO + O_3 \rightarrow NO_2 + O_2$$

• The rate of adsorption of NO₂ being higher than the rate of desorption, the NO_x remains adsorbed on the surface of soot.

EFFECT OF ENERGY DEPOSITION

- For a single pulse, exit NO densities are higher. Most of the adsorbed NO₂ desorbs back as NO. This does not happen in the case of multiple pulses because of the shorter interpulse time for NO₂ desorption.
- With a single pulse, the peroxy radicals which consume NO are lost by the time NO is regenerated from NO₂ and so, exit NO_x is mainly NO.

Optical and Discharge Physics

EFFECT OF ENERGY DEPOSITION: HNO₂ – SP vs. MP

 HNO₂ is produced by the reaction of NO with OH and by HO₂ with NO₂.

 $NO + OH + M \rightarrow HNO_2 + M \qquad (1)$ $NO_2 + HO_2 \rightarrow HNO_2 + O_2 \qquad (2)$

- With a single pulse, most of the HO₂ is consumed by the time NO₂ is formed and hence HNO₂ is mainly produced by reaction (1).
- NO₂ densities are higher with multiple pulses. HO₂ radicals are produced during each pulse. Hence, reaction (2) also contributes to HNO₂ production.

• With increasing energy deposition, the diameter of the soot decreases due to the oxidation by NO₂.

(€) + NO₂ → (€) + NO₂ → (€) + NO + CO

 At higher energies, the final diameter of soot increases because the density of NO₂ decreases due to the increased conversion to products such as HNO₂, CH₃ONO₂.

> $NO_2 + HO_2 \rightarrow HNO_2 + O_2$ $NO_2 + CH_3O + M \rightarrow CH_3ONO_2 + M$

- Note that the oxidation of soot is partial and results in CO and not CO₂.
 - CO poisonous
 - CO₂ greenhouse gas

MODIFICATION OF PLASMA CHEMISTRY BY SOOT

 Soot affects the overall plasma chemistry by affecting the densities of OH, HO₂, NO and NO₂.

- Plasma remediation of NO_x, by itself is not sufficient to completely remove NO_x.
- Soot chemistry significantly affects the NO_x composition in plasma remediation of NO_x.
- Soot can be oxidized by plasma and as high as 30% soot removal can be achieved at 60 J/L.
- Multiple pulse input results in *apparent* NO_x removal because of the increased adsorption onto the soot surface.
- With single pulse energy deposition, the exit-NO_x is primarily NO because of the reconversion of NO₂ to NO on soot surface.