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AGENDA

• Introduction to plasma surface modification of polymers

• Description of the model for gas phase and surface kinetics

• Processing of polypropylene in humid air plasmas

• Concluding remarks
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PLASMA SURFACE MODIFICATION OF POLYMERS

• Atmospheric pressure plasmas (typically coronas) are used for the 
ease of generation of gas-phase radicals which react with and 
modify the polymer surface.

RAJESH_AVS_02_03

• Polymers typically require surface activation to improve their wetting
and adhesion properties.
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SURFACE ENERGY AND WETTABILITY OF POLYMERS

MJK_AUSTIN_RD_01

• Most polymers, due to their low surface energies, are hydrophobic.

• For good adhesion between a liquid and a polymer, the surface
energy of the polymer should exceed the surface tension of the
liquid by ≈ 2-10 mN m-1.
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COMMERCIAL CORONA PLASMA EQUIPMENT
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(Tantec Inc.)
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POLYMER TREATMENT APPARATUS

RAJESH_AVS_02_04A
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TYPICAL PROCESS CONDITIONS:

Gas gap : a few mm
Applied voltage : 10-20 kV at a few 10s kHz
Energy deposition : 0.1 - 1.0 J cm-2
Residence time : a few s
Web speed : 10 - 200 m/min
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REACTION PATHWAY
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POLYPROPYLENE (PP) - STRUCTURE

RAJESH_AVS_02_06

• Polypropylene polymer:

• Three types of carbon atoms in a PP chain:

• Primary C – attached to only one another carbon;
• Secondary C – attached to two carbon atoms; and
• Tertiary C – attached to three carbon atoms.

• The reactivity of an H-atom depends on the type of C bonding.

• Reactivity scales as: HT > HS > HP (HT = tertiary H; HS = secondary H; 
HP = primary H)

C C C C C C
H H H H H H

H H HCH3 CH3CH3
1

2 3
1 - Primary C
2 - Secondary C
3 - Tertiary C
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FUNCTIONALIZATION OF THE PP SURFACE

RAJESH_AVS_02_07

• Untreated PP is hydrophobic (repels water).

• The increase in surface energy of PP after corona treatment is
attributed to the functionalization of the polymer surface with
hydrophilic groups (attract water).

• An air-corona-processed PP film contains hydrophilic functional
groups such as:

• Carbonyl (-C=O) • Alcohols (C-OH)
• Peroxy (-C-O-O) • Acids ((OH)C=O)

• The process parameters are energy deposition and relative
humidity (RH).

• At sufficiently high energy deposition, erosion of the polymer
occurs.
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DESCRIPTION OF THE MODEL: GLOBAL_KIN
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• Modules in GLOBAL_KIN:
• Circuit model
• Homogeneous plasma chemistry
• Species transport to PP surface
• Heterogeneous surface chemistry

N(t+∆t),V,I

CIRCUIT
MODULE
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KINETICS
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REACTION MECHANISM FOR HUMID-AIR

RAJESH_AVS_02_09

• Gas phase products of humid-air corona treatment include O3,
N2O, N2O5, HNO2, HNO3.
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SPECIES TRANSPORT TO THE POLYMER SURFACE

RAJESH_AVS_02_10

• Species in the bulk plasma diffuse to the PP surface through a
boundary layer (d ~ a few λmfp ≈ µm).

• Flux of the radicals reaching the surface is,

4
thnv

=φ , n = density, vth = thermal speed.

• Radicals react on PP based on a site balance model.

POLYPROPYLENE
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REACTIONS AT PP SURFACE

RAJESH_AVS_02_11

• O and OH abstract H from PP to produce alkyl radicals.

• Reactions of O3 and O2 with alkyl radicals produce peroxy
and alkoxy radicals, which further react to form alcohols and 
carbonyl species.
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BASE CASE: ne, Te

RAJESH_AVS_02_12

• Ionization is dominantly of N2 and O2,

e + N2 → N2
+ + e + e, 

e + O2 → O2
+ + e + e.

• Once the gap voltage decreases below
sustaining, electrons decay by attachment
(primarily to O2).

• The differences between the 1st and later
pulses are due to the incomplete charging
of the dielectrics on the electrodes.

• N2/O2/H2O = 79/20/1, 300 K, 15 kV at 9.6 kHz.

• Edep = 0.8 J cm-2, Web speed = 250 cm/s.
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GAS-PHASE RADICALS: O, OH

RAJESH_AVS_02_13

• Electron impact dissociation of O2 and H2O produces O and OH.

• O is consumed in the gas phase primarily to form O3,

O + O2 + M → O3 + M.

• After 100s of discharge pulses, the radicals attain a periodic
steady state.
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• Surface concentrations of alcohols, peroxy radicals achieve near
steady state with a few J cm-2.

• Alcohol densities decreased at higher energy deposition due to
decomposition by O and OH to regenerate alkoxy radicals.
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MODEL VS. EXPERIMENT

RAJESH_AVS_02_14

* L-A. Ohare et al., Surf. Interface Anal. 33, 335 (2002). 
Air at 300 K, 1 atm, 30% RH

Experiment*
Model
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GAS-PHASE PRODUCTS: O3, NXOY, HNOX

RAJESH_AVS_02_15

• O3 is produced by the 
reaction of O with O2,

O + O2 + M → O3 + M.

• N-containing products
include NO, NO2, HNO2 and
N2O5,

N2 + O → NO + N,
NO + O + M → NO2 + M,

NO + OH + M → HNO2 + M,
NO2 + NO3 + M → N2O5 + M.
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EFFECT OF RH: PP FUNCTIONALIZATION

RAJESH_AVS_02_16

• With increasing RH, more OH is produced.
• Due to the high reactivity of OH, more PP alkyl radicals are generated.
• As a result, the densities of peroxy radicals increase,

PP-H + OH(g) → PP• + H2O(g) PP• + O2(g) → PP-O2• .

• Alcohol and carbonyl densities decrease at higher RH due to 
increased consumption by OH to form alkoxy radicals and acids.

0

1

2

3

1 10 100
RH (%)

Peroxy

Alcohol

Carbonyl
AcidS

ur
fa

ce
 C

on
ce

nt
ra

tio
n 

(%
)

PP-OH+ OH(g)
→ PP-O• + H2O(g) 

PP=O• + OH(g)
→ (OH)PP=O

0

5

10

15

1 10 100
RH (%)

D
en

si
ty

 (1
01

3  
cm

-3
)

<OH>

<O>



University of Illinois
Optical and Discharge Physics

EFFECT OF RH: GAS-PHASE PRODUCTS

RAJESH_AVS_02_17

• Higher RH results in decreasing O atom densities and so the
production of O3 decreases.

• Due to the increased production of OH with RH, larger densities of
HNO2 and HNO3 are produced.

N + OH → NO + H, NO + OH → HNO2,     NO2 + OH → HNO3.
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EFFECT OF TEMPERATURE: GAS-PHASE PRODUCTS

RAJESH_AVS_02_18

• With increasing gas temperature, consumption of O3 increases.
• Most of the NO is lost by reduction to N2 and oxidation to NO2,

NO + N → N2 + O, NO + O3 → NO2 + O2.

• N2O5 is a maximum at intermediate temperatures,

NO2 + NO3 + M → N2O5 + M, N2O5 → NO2 + NO3.
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EFFECT OF TGAS: PP FUNCTIONALIZATION

RAJESH_AVS_02_19

• With increasing gas temperature,
the production of O3 decreases 
leading to lower alkoxy
production,

PP• + O3(g) → PP-O• + O2(g).

• … and decreased production of
alcohols, carbonyl, and acids, 

PP-O• + PP-H → PP-OH + PP•

PP-O• → PP=O
PP=O → PP=O•

PP=O• + OH → (OH)PP=O•

• Decreased consumption of alkyl radicals by O3 enables increased
consumption by O2 increasing the density of peroxy radicals.
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SUMMARY
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• A surface reaction mechanism for PP has been developed and
validated against experiments.

• With increasing energy deposition the surface concentrations of
alcohol, acid, carbonyl, and peroxy groups increase.

• However, significant densities of environmentally sensitive gases
such as O3 (1017 cm-3) and HNO3 (1016 cm-3) are generated.

• Increasing RH resulted in increased surface concentrations of
peroxy and acid groups and decreased alcohols and carbonyls.

• Operating at larger RH resulted in reduced production of O3.

• Surface concentrations of alcohol, carbonyl, and acid groups
decreased with temperature while those of peroxy groups
increased.


