ATMOSPHERIC PRESSURE PLASMA PROCESSING OF POLYPROPYLENE*

Rajesh Dorai¹ and Mark J. Kushner²

University of Illinois ¹ Department of Chemical and Biomolecular Engineering, dorai@uiuc.edu ² Department of Electrical and Computer Engineering, mjk@uiuc.edu Urbana, IL 61801

http://uigelz.ece.uiuc.edu

November 2002

* Work supported by the 3M Company and the National Science Foundation (CTS99-74962)

AGENDA

- Introduction to plasma surface modification of polymers
- Description of the model for gas phase and surface kinetics
- Processing of polypropylene in humid air plasmas
- Concluding remarks

PLASMA SURFACE MODIFICATION OF POLYMERS

- Polymers typically require surface activation to improve their wetting and adhesion properties.
- Atmospheric pressure plasmas (typically coronas) are used for the ease of generation of gas-phase radicals which react with and modify the polymer surface.

SURFACE ENERGY AND WETTABILITY OF POLYMERS

- Most polymers, due to their low surface energies, are hydrophobic.
- For good adhesion between a liquid and a polymer, the surface energy of the polymer should exceed the surface tension of the liquid by \approx 2-10 mN m⁻¹.

COMMERCIAL CORONA PLASMA EQUIPMENT

(Tantec Inc.)

POLYMER TREATMENT APPARATUS

REACTION PATHWAY

POLYPROPYLENE (PP) - STRUCTURE

• Polypropylene polymer:

- Three types of carbon atoms in a PP chain:
 - Primary C attached to only one another carbon;
 - Secondary C attached to two carbon atoms; and
 - Tertiary C attached to three carbon atoms.
- The reactivity of an H-atom depends on the type of C bonding.
- Reactivity scales as: H_T > H_S > H_P (H_T = tertiary H; H_S = secondary H; H_P = primary H)

FUNCTIONALIZATION OF THE PP SURFACE

- Untreated PP is hydrophobic (repels water).
- The increase in surface energy of PP after corona treatment is attributed to the functionalization of the polymer surface with hydrophilic groups (attract water).
- An air-corona-processed PP film contains hydrophilic functional groups such as:
 - Carbonyl (-C=O) Alcohols (C-OH)
 - Peroxy (-C-O-O) Acids ((OH)C=O)
- The process parameters are energy deposition and relative humidity (RH).
- At sufficiently high energy deposition, erosion of the polymer occurs.

DESCRIPTION OF THE MODEL: GLOBAL_KIN

- Modules in GLOBAL_KIN:
 - Circuit model
 - Homogeneous plasma chemistry
 - Species transport to PP surface
 - Heterogeneous surface chemistry

REACTION MECHANISM FOR HUMID-AIR

 Gas phase products of humid-air corona treatment include O₃, N₂O, N₂O₅, HNO₂, HNO₃.

SPECIES TRANSPORT TO THE POLYMER SURFACE

- Species in the bulk plasma diffuse to the PP surface through a boundary layer (d ~ a few $\lambda_{mfp} \approx \mu m$).
- Flux of the radicals reaching the surface is,

$$\phi = \frac{nv_{th}}{4}$$
 , *n* = density, *v*_{th} = thermal speed.

• Radicals react on PP based on a site balance model.

REACTIONS AT PP SURFACE

- O and OH abstract H from PP to produce alkyl radicals.
- Reactions of O₃ and O₂ with alkyl radicals produce peroxy and alkoxy radicals, which further react to form alcohols and carbonyl species.

BASE CASE: n_e, T_e

• Ionization is dominantly of N₂ and O₂,

 $e + N_2 \rightarrow N_2^+ + e + e,$ $e + O_2 \rightarrow O_2^+ + e + e.$

- Once the gap voltage decreases below sustaining, electrons decay by attachment (primarily to O₂).
- The differences between the 1st and later pulses are due to the incomplete charging of the dielectrics on the electrodes.
- $N_2/O_2/H_2O = 79/20/1$, 300 K, 15 kV at 9.6 kHz.
- Edep = 0.8 J cm⁻², Web speed = 250 cm/s.

GAS-PHASE RADICALS: O, OH

- Electron impact dissociation of O₂ and H₂O produces O and OH.
- O is consumed in the gas phase primarily to form O₃,

$$O + O_2 + M \rightarrow O_3 + M.$$

 After 100s of discharge pulses, the radicals attain a periodic steady state.

MODEL VS. EXPERIMENT

- Surface concentrations of alcohols, peroxy radicals achieve near steady state with a few J cm⁻².
- Alcohol densities decreased at higher energy deposition due to decomposition by O and OH to regenerate alkoxy radicals.

* L-A. Ohare et al., Surf. Interface Anal. 33, 335 (2002).

GAS-PHASE PRODUCTS: O_3 , N_XO_Y , HNO_X

O₃ is produced by the reaction of O with O₂,

 $O + O_2 + M \rightarrow O_3 + M.$

 N-containing products include NO, NO₂, HNO₂ and N₂O₅,

$$\begin{split} \mathbf{N_2} + \mathbf{O} &\rightarrow \mathbf{NO} + \mathbf{N}, \\ \mathbf{NO} + \mathbf{O} + \mathbf{M} &\rightarrow \mathbf{NO_2} + \mathbf{M}, \\ \mathbf{NO} + \mathbf{OH} + \mathbf{M} &\rightarrow \mathbf{HNO_2} + \mathbf{M}, \\ \mathbf{NO_2} + \mathbf{NO_3} + \mathbf{M} &\rightarrow \mathbf{N_2O_5} + \mathbf{M}. \end{split}$$

EFFECT OF RH: PP FUNCTIONALIZATION

- With increasing RH, more OH is produced.
- Due to the high reactivity of OH, more PP alkyl radicals are generated.
- As a result, the densities of peroxy radicals increase,

 $\mathsf{PP-H} + \mathsf{OH}_{(g)} \to \mathsf{PP} \bullet + \mathsf{H}_2\mathsf{O}_{(g)} \qquad \qquad \mathsf{PP} \bullet + \mathsf{O}_{2(g)} \to \mathsf{PP-O}_2 \bullet \ .$

 Alcohol and carbonyl densities decrease at higher RH due to increased consumption by OH to form alkoxy radicals and acids.

EFFECT OF RH: GAS-PHASE PRODUCTS

- Higher RH results in decreasing O atom densities and so the production of O₃ decreases.
- Due to the increased production of OH with RH, larger densities of HNO₂ and HNO₃ are produced.

 $N + OH \rightarrow NO + H$,

EFFECT OF TEMPERATURE: GAS-PHASE PRODUCTS

- With increasing gas temperature, consumption of O₃ increases.
- Most of the NO is lost by reduction to N₂ and oxidation to NO₂.

 $NO + N \rightarrow N_2 + O$, $NO + O_3 \rightarrow NO_2 + O_2$.

N₂O₅ is a maximum at intermediate temperatures,

 $NO_2 + NO_3 + M \rightarrow N_2O_5 + M$, $N_2O_5 \rightarrow NO_2 + NO_3$. 2.5 15 $\sqrt{N_2O_5}$ 2.0 Density (10¹⁴ cm⁻³) 3 O₃ (10¹⁷ cm⁻³) $N_{y}O_{X}$ (10¹⁴ cm⁻³) HNO₃ (x 0.1) 10 O_2 1.5 N₂O (x 0.1) 1.0 CO_2 NO₂ 0.5 NO HNO_2 0.0 0 350 310 320 330 340 300 310 320 330 340 350 300 Gas Temperature (K) Gas Temperature (K)

EFFECT OF T_{GAS}: PP FUNCTIONALIZATION

 With increasing gas temperature, the production of O₃ decreases leading to lower alkoxy production,

 $\mathsf{PP}\bullet + \mathsf{O}_{3(g)} \to \mathsf{PP}\text{-}\mathsf{O}\bullet + \mathsf{O}_{2(g).}$

 ... and decreased production of alcohols, carbonyl, and acids,

```
\begin{array}{c} \mathsf{PP-O}\bullet + \mathsf{PP-H} \to \mathsf{PP-OH} + \mathsf{PP}\bullet\\ & \mathsf{PP-O}\bullet \to \mathsf{PP=O}\\ & \mathsf{PP=O} \to \mathsf{PP=O}\bullet\\ & \mathsf{PP=O}\bullet + \mathsf{OH} \to (\mathsf{OH})\mathsf{PP=O}\bullet \end{array}
```


 Decreased consumption of alkyl radicals by O₃ enables increased consumption by O₂ increasing the density of peroxy radicals.

SUMMARY

- A surface reaction mechanism for PP has been developed and validated against experiments.
- With increasing energy deposition the surface concentrations of alcohol, acid, carbonyl, and peroxy groups increase.
- However, significant densities of environmentally sensitive gases such as O₃ (10¹⁷ cm⁻³) and HNO₃ (10¹⁶ cm⁻³) are generated.
- Increasing RH resulted in increased surface concentrations of peroxy and acid groups and decreased alcohols and carbonyls.
- Operating at larger RH resulted in reduced production of O₃.
- Surface concentrations of alcohol, carbonyl, and acid groups decreased with temperature while those of peroxy groups increased.