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INTRODUCTION
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• Nitrogen oxides (NO, NO2) - NOX, are one of the six major pollutants
identified by the EPA, others being CO, Pb, SOX, volatile matter and
particulates.  All emissions have decreased except for NOx (EPA, 1998).

• Harmful effects of NOX

• Acid deposition

• Formation of ozone

• Eutrophication of water bodies

• Inhalable fine particles

• Visibility degradation
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PLASMA REMEDIATION OF NOX USING DBDs

GEC-2000-04

          University of Illinois
  Optical and Discharge Physics

• Dielectric barrier discharges (DBDs) are well suited for generation of gas-
phase radicals at atmospheric pressures.

• Electron impact processes in DBDs produce radicals and ions which
initiate the plasma chemistry.

Exhaust 
with NOx 

& soot

Clean 
Efflluent

DBD
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DESCRIPTION OF GLOBAL-KIN
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• GLOBAL-KIN is a spatially homogeneous plasma chemistry simulation
coupled with circuit and surface reaction modules.

• The model uses a lookup table generated by an offline Boltzmann solver to
obtain the e-impact reaction rate coefficients.
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OPERATING CONDITIONS
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• Typical diesel exhausts contain N2, O2 (excess air); H2O, CO2 (products)
and trace amounts of NO, CO, H2 and unburned hydrocarbons (UHCs).

• To simulate actual exhausts, we have used propane (C3H8) and propene
(C3H6) as representative of the UHCs.

• Inlet gas composition

N2/O2/H2O/CO2=78/8/6/7 NO=260 ppm, CO=400 ppm, H2=133 ppm
C3H6=500 ppm , C3H8=175 ppm

• T=180 oC, P=1atm
ττ = residence time of exhaust in DBD = 0.2 s



REACTION MECHANISMS : NOX, C3H6, C3H8
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• In the presence of UHCs, the primary reaction is oxidation of NO by the
peroxy radicals.

• Propene reactions are initiated both by O and OH whereas propane
reactions are mainly OH initiated.
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SOOT PARTICLES – EFFECT ON NOX REMEDIATION
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• Soot particles found in diesel exhausts are typically 100 nm and containing
C/H/O=89/1/10.

• The radicals produced in the plasma diffuse to the soot surface and react.

O + Su →→ Oadsorbed →→ CO
OH + Su →→ OHadsorbed →→ CO + H2

NO2 + Su →→ NO2 (adsorbed) →→ NO + CO
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SOOT OXIDATION MODEL
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• Region surrounding soot is
divided into two zones.
• Diffusion regime
• Homogeneous Bulk

Plasma

• Species that react on the
soot surface diffuse
through the boundary layer.

• Boundary layer thickness,
δδ, is obtained from the
Reynolds number.  For low
Re, δδ ≈≈ ds/2.

• The diffusing species have
a linear profile in the
diffusion regime.
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PLASMA CONDITIONS : ne, Te, [N], [OH], [O]
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• Peak ne ≈≈ 1013 cm-3 and Te ≈≈ 3 eV with Edep ≈≈ 38 J/L.

• Electron impact dissociation of N2, O2 and H2O produce N, O and OH
respectively.
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NOX REMEDIATION : SINGLE PULSE
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• With a single pulse, exit NO densities are high because of the depletion of
O3 and peroxy radicals by the time of desorption of NO2(ads).

NO +O3 (or peroxies) →→ NO2 →→ NO2(ads) →→ NO
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NOX REMEDIATION : MULTIPLE PULSE
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• With multiple pulses, NO is converted to NO2 by O3 and peroxy radicals
produced during each pulse.

NO +O3 →→ NO2 + O2

• The rate of adsorption of NO2 being higher than the rate of desorption, the
NOx remains adsorbed on the surface of soot.
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EFFECT OF ENERGY DEPOSITION
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• For a single pulse, exit NO densities are higher because of the larger time
available for NO2 desorption from the soot surface.

• The peroxy radicals available for NO consumption are lost by the time NO
is regenerated from NO2.

0

50

100

150

200

250

0 20 40 60 80 100
Energy Deposition (J/L)

D
en

si
ty

 (
pp

m
)

SP - Single pulse 
MP - Multiple pulse

NO2 - MP
NO - MP

NO2 - SP

NO - SP

1012

1013

1014

1015

0 20 40 60 80 100
Energy Deposition (J/L)

N
O

2 
(a

ds
or

be
d)

 (
cm

-2
) Multiple pulse

Single pulse



SOOT OXIDATION
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• With increasing energy deposition,
the diameter of the soot decreases
due to the oxidation by NO2.

NO2+ NO2 + NO + CO

• At higher energies, the final
diameter of soot increases because
the density of NO2 decreases due to
the gas-phase reconversion to NO.

NO2 + O →→ NO + O2

• Note that the oxidation of soot is
partial and results in CO and not
CO2.
• CO – poisonous
• CO2 – greenhouse gas
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CONCLUDING REMARKS

GEC-2000-14

          University of Illinois
  Optical and Discharge Physics

• Plasma remediation of NOx, by itself is not sufficient to completely remove
NOx.

• Soot chemistry significantly affects the NOx composition in plasma
remediation of NOx.

• Soot can be oxidized by plasma and as high as 30% soot removal can be
achieved at 60 J/L.

• Multiple pulse input results in apparent NOx removal because of the
increased adsorption onto the soot surface.

• With single pulse energy deposition, the exit-NOx is primarily NO because
of the reconversion of NO2 to NO on soot surface.


