SIMULTANEOUS REMEDIATION OF NO_X AND OXIDATION OF SOOT USING DIELECTRIC BARRIER DISCHARGES^{*}

Rajesh Dorai and Mark J. Kushner University of Illinois Deparment of Electrical and Computer Engineering Urbana, IL 61801

Khaled Hassouni

LIMHP, CNRS-UPR1311, Universite Paris Nord, Villetaneuse, France.

Email : dorai@uiuc.edu mjk@uiuc.edu hassouni@limhp.univ-paris13.fr

http://uigelz.ece.uiuc.edu

October 2000

Work supported by Ford Motor Company and NSF (CTS99-74962)

AGENDA

- Introduction
- Description of the model GLOBAL_KIN
- Reaction mechanisms
- Effect of soot particles on NO_x remediation
- Results
 - NO_x remediation
 - Soot oxidation
 - Effect of multiple pulses on NO_x chemistry
- Concluding remarks

University of Illinois Optical and Discharge Physics

- Nitrogen oxides (NO, NO₂) NO_x, are one of the six major pollutants identified by the EPA, others being CO, Pb, SO_x, volatile matter and particulates. All emissions have decreased except for NO_x (EPA, 1998).
- Harmful effects of NO_X
 - Acid deposition
 - Formation of ozone
 - Eutrophication of water bodies
 - Inhalable fine particles
 - Visibility degradation

University of Illinois Optical and Discharge Physics

PLASMA REMEDIATION OF NO_X USING DBDs

- Dielectric barrier discharges (DBDs) are well suited for generation of gasphase radicals at atmospheric pressures.
- Electron impact processes in DBDs produce radicals and ions which initiate the plasma chemistry.

- GLOBAL-KIN is a spatially homogeneous plasma chemistry simulation coupled with circuit and surface reaction modules.
- The model uses a lookup table generated by an offline Boltzmann solver to obtain the e-impact reaction rate coefficients.

- Typical diesel exhausts contain N₂, O₂ (excess air); H₂O, CO₂ (products) and trace amounts of NO, CO, H₂ and unburned hydrocarbons (UHCs).
- To simulate actual exhausts, we have used propane (C₃H₈) and propene (C₃H₆) as representative of the UHCs.
- Inlet gas composition

 $N_2/O_2/H_2O/CO_2=78/8/6/7$ NO=260 ppm, CO=400 ppm, H₂=133 ppm $C_3H_6=500$ ppm , $C_3H_8=175$ ppm

T=180 °C, P=1atm
 τ = residence time of exhaust in DBD = 0.2 s

University of Illinois Optical and Discharge Physics

- In the presence of UHCs, the primary reaction is oxidation of NO by the peroxy radicals.
- Propene reactions are initiated both by O and OH whereas propane reactions are mainly OH initiated.

SOOT PARTICLES – EFFECT ON NO_X REMEDIATION

- Soot particles found in diesel exhausts are typically 100 nm and containing C/H/O=89/1/10.
- The radicals produced in the plasma diffuse to the soot surface and react.

SOOT OXIDATION MODEL

- Region surrounding soot is divided into two zones.
 - Diffusion regime
 - Homogeneous Bulk
 Plasma
- Species that react on the soot surface diffuse through the boundary layer.
- Boundary layer thickness, δ , is obtained from the Reynolds number. For low *R*e, $\delta \approx d_s/2$.
- The diffusing species have a linear profile in the diffusion regime.

- Peak $n_e \approx 10^{13}$ cm⁻³ and $T_e \approx 3$ eV with $E_{dep} \approx 38$ J/L.
- Electron impact dissociation of N₂, O₂ and H₂O produce N, O and OH respectively.

 With a single pulse, exit NO densities are high because of the depletion of O₃ and peroxy radicals by the time of desorption of NO_{2(ads)}.

NO +O3 (or peroxies) \rightarrow NO2 \rightarrow NO2(ads) \rightarrow NO

• With multiple pulses, NO is converted to NO₂ by O₃ and peroxy radicals produced during each pulse.

$$NO + O_3 \rightarrow NO_2 + O_2$$

• The rate of adsorption of NO₂ being higher than the rate of desorption, the NO_x remains adsorbed on the surface of soot.

- For a single pulse, exit NO densities are higher because of the larger time available for NO₂ desorption from the soot surface.
- The peroxy radicals available for NO consumption are lost by the time NO is regenerated from NO₂.

• With increasing energy deposition, the diameter of the soot decreases due to the oxidation by NO₂.

 $(\mathbb{P} + NO_2 \rightarrow \mathbb{P} - NO_2 \rightarrow \mathbb{P} + NO + CO)$

 At higher energies, the final diameter of soot increases because the density of NO₂ decreases due to the gas-phase reconversion to NO.

 $NO_2 + O \rightarrow NO + O_2$

- Note that the oxidation of soot is partial and results in CO and not CO₂.
 - CO poisonous
 - CO₂ greenhouse gas

- Plasma remediation of NO_x, by itself is not sufficient to completely remove NO_x.
- Soot chemistry significantly affects the NO_x composition in plasma remediation of NO_x.
- Soot can be oxidized by plasma and as high as 30% soot removal can be achieved at 60 J/L.
- Multiple pulse input results in *apparent* NO_x removal because of the increased adsorption onto the soot surface.
- With single pulse energy deposition, the exit-NO_x is primarily NO because of the reconversion of NO₂ to NO on soot surface.