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INTRODUCTION

- Nitrogen oxides (NO, NO,) - NOy, are one of the six major pollutants
identified by the EPA, others being CO, Pb, SOy, volatile matter and
particulates. All emissions have decreased except for NO, (EPA, 1998).

- Harmful effects of NOy All Other
Sources
- Acid deposition Industrial/ 5%

] Commercial/
- Formation of ozone Residential

19% Motor Vehicles

- Eutrophication of water bodies 49%
Inhalable fine particles

- Visibility degradation
Utilities

27%
Major sources of NO, (EPA, 1998)
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PLASMA REMEDIATION OF NOx USING DBDs

- Dielectric barrier discharges (DBDs) are well suited for generation of gas-
phase radicals at atmospheric pressures.

- Electron impact processes in DBDs produce radicals and ions which
initiate the plasma chemistry.

e+N,® N+ N+e
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University of lllinois
Optical and Discharge Physics

GEC-2000-04



DESCRIPTION OF GLOBAL-KIN

- GLOBAL-KIN is a spatially homogeneous plasma chemistry simulation
coupled with circuit and surface reaction modules.

- The model uses a lookup table generated by an offline Boltzmann solver to
obtain the e-impact reaction rate coefficients.
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OPERATING CONDITIONS

- Typical diesel exhausts contain N,, O, (excess air); H,O, CO, (products)
and trace amounts of NO, CO, H, and unburned hydrocarbons (UHCs).

- To simulate actual exhausts, we have used propane (C3Hg) and propene
(CsHe) as representative of the UHCs.

- Inlet gas composition

N,/O,/H,O/CO,=78/8/6/7 NO=260 ppm, CO=400 ppm, H,=133 ppm
C3He=500 ppm , C3Hg=175 ppm

. T=180 °C, P=1atm
t =residence time of exhaust in DBD =0.2 s
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REACTION MECHANISMS : NOx, C3Hg, C3Hg

In the presence of UHCs, the primary reaction is oxidation of NO by the
peroxy radicals.

Propene reactions are initiated both by O and OH whereas propane
reactions are mainly OH initiated.

H
Methyl € 2= C3Hg 2 CaHgOH 22 CaHg(00)OH %» eee — B CH3CHO, HCHO

Oxirane
Co2H5CHO NO>2

OH 0
C3Hg——# C3H7 —2p C3H702 N9 eee — »CH3C(0)CH3

CH3CH»2CHO
NO2
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SOOT PARTICLES — EFFECT ON NOx REMEDIATION

- Soot particles found in diesel exhausts are typically 100 nm and containing
C/H/O=89/1/10.

- The radicals produced in the plasma diffuse to the soot surface and react.

O+Su® Oadsorbed ® CO
OH + Su ® OHgagsorpeq ® CO + H,

OH  ,CO,H»
Exhaust
B T, Oy e

Soot surface
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SOOT OXIDATION MODEL

Region surrounding soot is

divided into two zones.
Diffusion regime
Homogeneous Bulk
Plasma

- Species that react on the
soot surface diffuse

through the boundary layer.

Boundary layer thickness,
d, is obtained from the
Reynolds number. For low
Re, d » dJ/2.

- The diffusing species have
a linear profile in the
diffusion regime.
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PLASMA CONDITIONS : ne, Te, [N], [OH], [O]
. Peak ng» 10" cm™ and Te » 3 eV with Egep, » 38 J/L.

- Electron impact dissociation of N,, O, and H,O produce N, O and OH
respectively.
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NOyx REMEDIATION : SINGLE PULSE

- With a single pulse, exit NO densities are high because of the depletion of
O3 and peroxy radicals by the time of desorption of NOggs).

NO +0O; (or peroxies) ® NO, ® NOyugsy ® NO
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NOx REMEDIATION : MULTIPLE PULSE

- With multiple pulses, NO is converted to NO, by O; and peroxy radicals
produced during each pulse.

NO +O; ® NO; + O,

- The rate of adsorption of NO, being higher than the rate of desorption, the
NO, remains adsorbed on the surface of soot.
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EFFECT OF ENERGY DEPOSITION

- For a single pulse, exit NO densities are higher because of the larger time
available for NO,desorption from the soot surface.

- The peroxy radicals available for NO consumption are lost by the time NO
Is regenerated from NO..
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SOOT OXIDATION

- With increasing energy deposition,

. 15 1 1 1 1 100
the diameter of the soot decreases

due to the oxidation by NO.. Diameter 80
‘ $—NO2 —» € + NO + CO S =)
2 + + ’élO' \‘/NOz =
S 3
. At higher energies, the final S | 40"§
diameter of soot increases because z 5l | ) 2
the density of NO, decreases due to 3 , %
the gas-phase reconversion to NO. ~.. 1998

OL—— - - - 0

NO; + O ® NO +O; 0O 20 40 60 80 100

Energy Deposition (J/L)
Note that the oxidation of soot is
partial and results in CO and not
CO:..
CO — poisonous
CO, — greenhouse gas
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CONCLUDING REMARKS

- Plasma remediation of NO,, by itself is not sufficient to completely remove
NOX-

- Soot chemistry significantly affects the NO, composition in plasma
remediation of NO,.

- Soot can be oxidized by plasma and as high as 30% soot removal can be
achieved at 60 J/L.

- Multiple pulse input results in apparent NO, removal because of the
iIncreased adsorption onto the soot surface.

- With single pulse energy deposition, the exit-NOy is primarily NO because
of the reconversion of NO, to NO on soot surface.
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