EFFECT OF RADIAL TRANSPORT ON THE PLASMA REMEDIATION OF NITROGEN-OXIDES USING DIELECTRIC BARRIER DISCHARGES^{*}

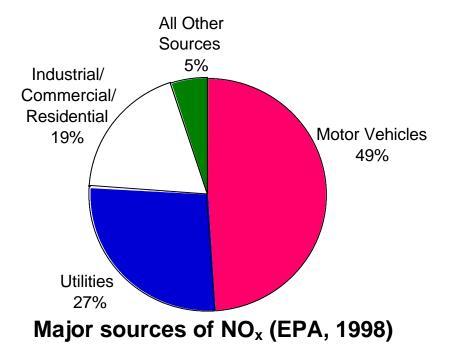
Rajesh Dorai** and Mark J. Kushner*** University of Illinois **Department of Chemical Engineering ***Deparment of Electrical and Computer Engineering Urbana, IL 61801

Khaled Hassouni LIMHP, CNRS-UPR1311, Universite Paris Nord, Villetaneuse, France

> Email : dorai@uiuc.edu mjk@uiuc.edu hassouni@limhp.univ-paris13.fr

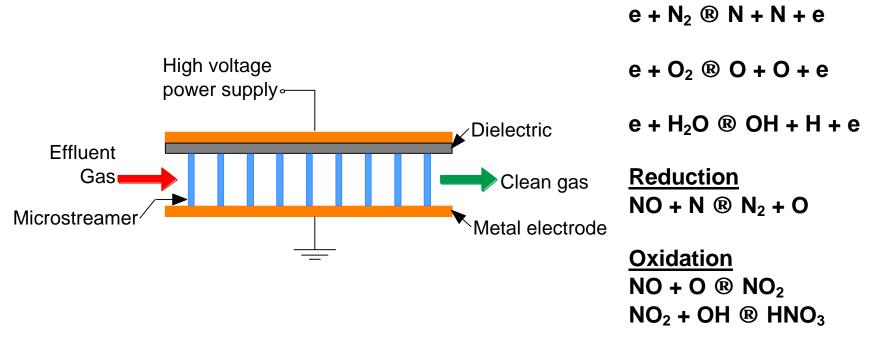
http://uigelz.ece.uiuc.edu

June 2001


^{*} Work supported by Ford Motor Company and NSF (CTS99-74962)

AGENDA

- Introduction
- Description of the model DBDONED
- Reaction mechanisms Unburned hydrocarbons (UHCs)
- Results
 - NO_x remediation
 - Effect of UHCs
 - Diffusion
- Concluding remarks


INTRODUCTION

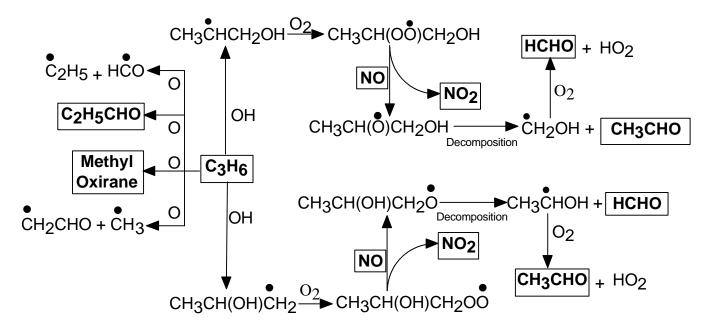
- Nitrogen oxides (NO, NO₂) NO_x, are one of the six major pollutants identified by the EPA, others being CO, Pb, SO_x, volatile matter and particulates. All emissions have decreased except for NO_x (EPA, 1998).
- Harmful effects of NO_X
 - Acid deposition
 - Formation of ozone
 - Eutrophication of water bodies
 - Inhalable fine particles
 - Visibility degradation

PLASMA REMEDIATION OF NO_X USING DBDs

- Dielectric barrier discharges (DBDs) are well suited for generation of gasphase radicals at atmospheric pressure.
- Electron impact processes in DBDs produce radicals and ions which initiate the plasma chemistry.

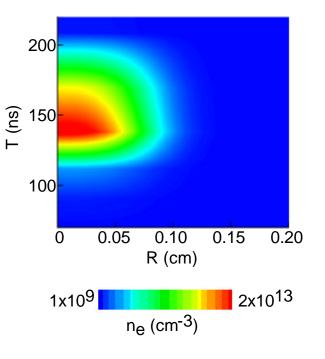
DESCRIPTION OF THE MODEL - DBDONED

- In actual microdischarges, inhomogeneities exist and hence, for more realistic investigations, effects of species transport should be included.
- DBDONED is a one dimensional (radial) plasma chemistry simulation coupled with hydrodynamics and circuit modules.
- To obtain e-impact reaction rate coefficients, the model uses a lookup table generated by an offline Boltzmann solver.


OPERATING CONDITIONS

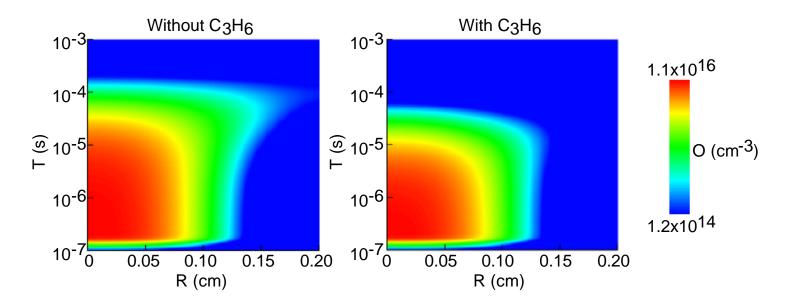
- Typical diesel exhausts contain N₂, O₂ (excess air); H₂O, CO₂ (products) and trace amounts of NO, CO, H₂ and unburned hydrocarbons (UHCs).
- To simulate actual exhausts, we have used propene (C₃H₆) as representative of the UHCs.
- Previous studies have shown that saturated hydrocarbons (propane) do not contribute significantly to the overall NO_x remediation and hence, they were not included in this investigation.
- Inlet gas composition

 $N_2/O_2/H_2O/CO_2=78/8/6/7$ NO=260 ppm, CO=400 ppm, H₂=133 ppm $C_3H_6=500$ ppm


T=180 °C, P=1atm
 t = residence time of exhaust in DBD = 0.2 s

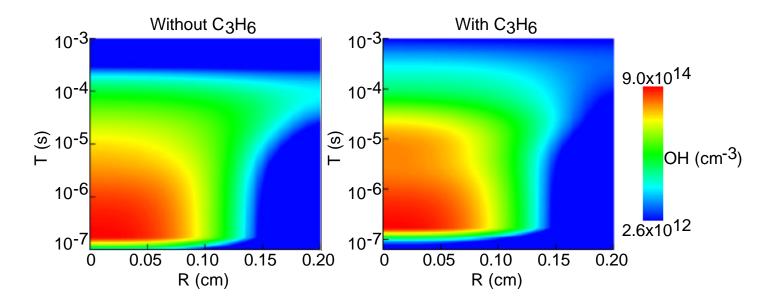
- C₃H₆ reactions are initiated by O and OH.
- Peroxy radicals formed from OH-initiated reactions with propene, oxidize NO to NO₂.
- NO_x is also converted to other organic nitrates and nitrites, but most of the initial NO_x (NO) is primarily oxidized to NO₂.

- For these results, only diffusion is taken into account (low energy deposition - 7 J/L).
- The current pulse usually lasts ~ 150 ns.
- Peak values $T_e \approx 3 \text{ eV}$, $n_e \sim 10^{13} \text{ cm}^{-3}$.
- Electrons are produced by the ionization of N₂, O₂, CO₂ and H₂O.
- After the current pulse, electrons are mainly lost by reactions with O₂ and H₂O (dissociative attachment).


 $e + O_2 \otimes O^- + O$ $e + H_2O \otimes H^- + OH$

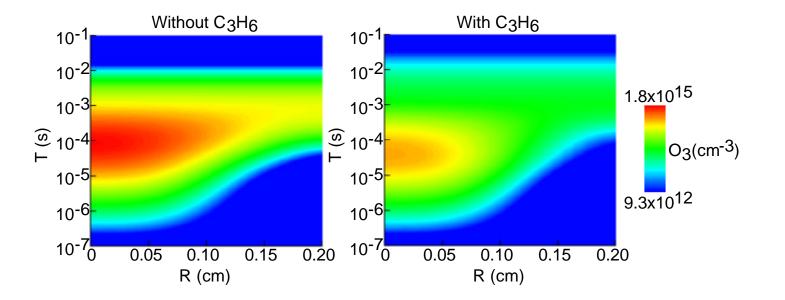
• Electron impact dissociation of O₂ and CO₂ produces O.

e + O₂ ® O + O + e e + CO₂ ® CO + O + e


 In the presence of UHCs (propene in this case), O is consumed by reactions with propene and hence diffusion of O is not as prominent as without UHCs.

• Initially (t < 1 ms), OH is produced by the electron impact dissociation of H_2O and at later times, is produced by the reaction of NO with HO_2 .

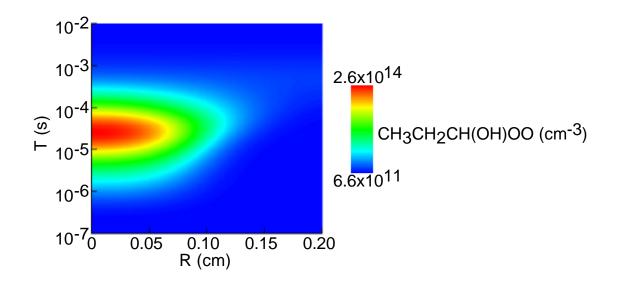
 $e + H_2O \otimes H + OH + e = e + H_2O \otimes H^- + OH$ NO + HO₂ \otimes NO₂ + OH


• Since UHC initiated reactions result in the production of HO₂, OH densities are sustained for longer times (t > 0.1 ms).

• Ozone is produced mainly through the reaction of O with O₂.

 $O + O_2 + M \otimes O_3 + M$

• In the presence of UHCs, lesser O_3 is formed due to the competition from UHCs for the O atoms. O_3 oxidizes NO to NO_2 .


 $O_3 + NO \otimes NO_2 + O_2$

NO OXIDATION BY PEROXY RADICALS

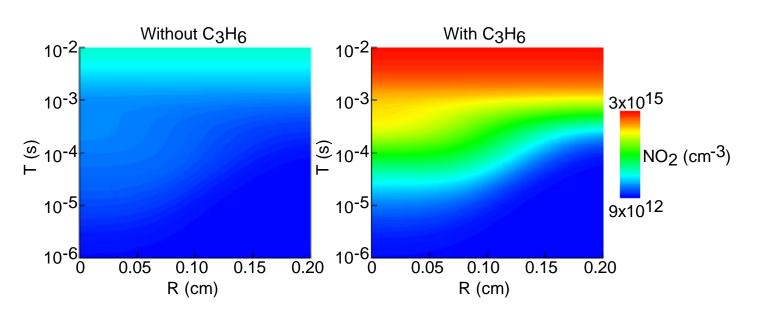
• Peroxy radicals (R-OO) are produced by hydroxy initiated reactions with propene. These radicals oxidize NO to NO₂.

 $R-OO' + NO \otimes NO_2 + R-O'$

• The products of the decomposition of alkoxy radicals (R-O[•]) then react with O₂ to produced HO₂. This results in the further oxidation of NO.

NO DENSITIES: WITH/WITHOUT C₃H₆

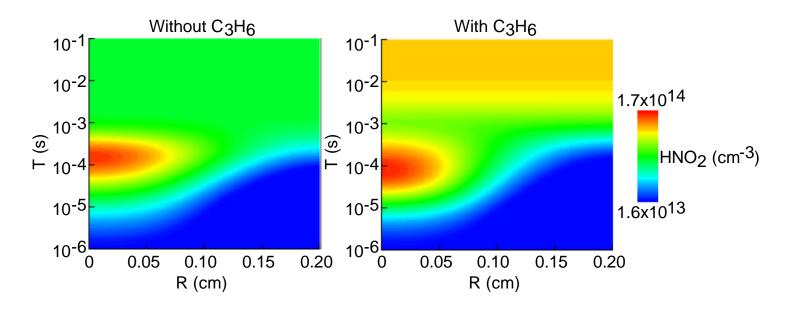
• In the presence of UHCs, NO conversion significantly increases mainly due to oxidation by the peroxy radicals and HO₂. Some NO is also converted into nitrates and nitrites.


R-OO' + NO ® NO₂ + R-O'

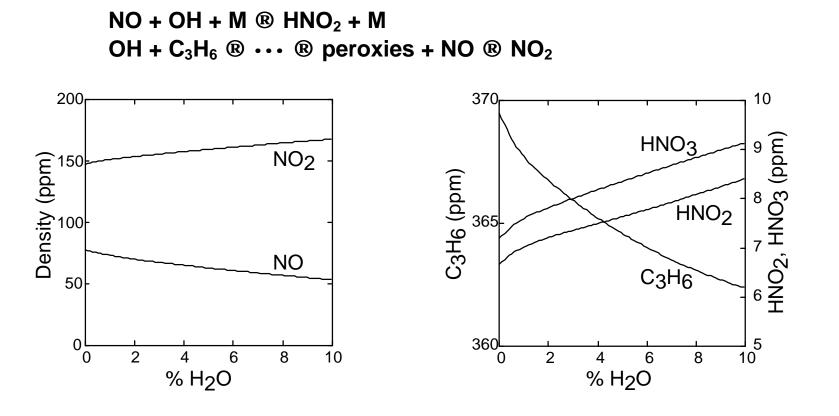
• As NO is depleted at small radii of the streamer, diffusion of NO from outer regions replenishes NO, thereby enabling further conversion by radicals.

NO₂ DENSITIES: WITH/WITHOUT C₃H₆

- Since UHCs provide extra reaction channels for the conversion of NO to NO₂, larger densities of NO₂ are achieved.
- NO₂ undergoes reactions with HO₂ to from HNO₂ and with OH to form HNO₃.



 $NO_2 + HO_2 \otimes HNO_2 + O_2$ $NO_2 + OH + M \otimes HNO_3 + M$


• HNO₂ is produced by the reactions of NO with OH and by the reaction of HO₂ with NO₂.

```
NO + OH + M \otimes HNO_2 + M
NO_2 + HO_2 \otimes HNO_2 + O_2
```

• In the presence of UHCs, more HO₂ is produced as a result of UHC initiated reactions and so more OH is produced. This increases HNO₂ production.

- H₂O affects NO_x remediation through the production of OH radicals.
- OH radicals not only react with NO directly but also initiate reactions with C₃H₆ which result in the oxidation of NO to NO₂.

CONCLUDING REMARKS

- A one-dimensional plasma chemistry simulation coupled with diffusion and circuit model has been developed.
- NO conversion is increased due to diffusion of NO from unprocessed volumes into the microstreamer and due to the diffusion of radicals from the streamer to outer regions.
- C_3H_6 mainly acts as an oxidizing agent for NO (to convert it to NO₂).
- The presence of C₃H₆ results in added consumption of O and OH in the microstreamer due to which transport of these radicals to outer regions is reduced.
- At higher energy depositions, advection is important and should be considered.