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INTRODUCTION
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• Nitrogen oxides (NO, NO2) - NOX, are one of the six major pollutants
identified by the EPA, others being CO, Pb, SOX, volatile matter and
particulates.  All emissions have decreased except for NOx (EPA, 1998).

• Harmful effects of NOX

• Acid deposition

• Formation of ozone

• Eutrophication of water bodies

• Inhalable fine particles

• Visibility degradation
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PLASMA REMEDIATION OF NOX USING DBDs
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• Dielectric barrier discharges (DBDs) are well suited for generation of gas-
phase radicals at atmospheric pressure.

• Electron impact processes in DBDs produce radicals and ions which
initiate the plasma chemistry.
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DESCRIPTION OF THE MODEL - DBDONED
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• In actual microdischarges, inhomogeneities exist and hence, for more
realistic investigations, effects of species transport should be included.

• DBDONED is a one dimensional (radial) plasma chemistry simulation
coupled with hydrodynamics and circuit modules.

• To obtain e-impact reaction rate coefficients, the model uses a lookup table
generated by an offline Boltzmann solver.
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OPERATING CONDITIONS
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• Typical diesel exhausts contain N2, O2 (excess air); H2O, CO2 (products) and
trace amounts of NO, CO, H2 and unburned hydrocarbons (UHCs).

• To simulate actual exhausts, we have used propene (C3H6) as
representative of the UHCs.

• Previous studies have shown that saturated hydrocarbons (propane) do not
contribute significantly to the overall NOx remediation and hence, they were
not included in this investigation.

• Inlet gas composition

N2/O2/H2O/CO2=78/8/6/7 NO=260 ppm, CO=400 ppm, H2=133 ppm
C3H6=500 ppm

• T=180 oC, P=1atm
ττ = residence time of exhaust in DBD = 0.2 s



REACTION MECHANISM: NO-C3H6
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• C3H6 reactions are initiated by O and OH.

• Peroxy radicals formed from OH-initiated reactions with propene, oxidize
NO to NO2.

• NOx is also converted to other organic nitrates and nitrites, but most of the
initial NOx (NO) is primarily oxidized to NO2.
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PLASMA PARAMETERS - ne, Te
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• For these results, only diffusion is taken
into account (low energy deposition - 7
J/L).

• The current pulse usually lasts ~ 150 ns.

• Peak values Te ≈≈ 3 eV, ne ~ 1013 cm-3.

• Electrons are produced by the ionization of
N2, O2, CO2 and H2O.

• After the current pulse, electrons are
mainly lost by reactions with O2 and H2O
(dissociative attachment).

e + O2 →→ O- + O
e + H2O →→ H- + OH
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INITIATOR RADICALS - O ATOMS
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• Electron impact dissociation of O2 and CO2 produces O.

e + O2 →→ O + O + e
e + CO2 →→ CO + O + e

• In the presence of UHCs (propene in this case), O is consumed by reactions
with propene and hence diffusion of O is not as prominent as without
UHCs.
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INITIATOR RADICALS - OH
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• Initially (t < 1 µµs), OH is produced by the electron impact dissociation of
H2O and at later times, is produced by the reaction of NO with HO2.

e + H2O →→ H + OH + e e + H2O →→ H- + OH
NO + HO2 →→ NO2 + OH

• Since UHC initiated reactions result in the production of HO2, OH densities
are sustained for longer times (t > 0.1 ms).
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OZONE (O3)
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• Ozone is produced mainly through the reaction of O with O2.

O + O2 + M →→ O3 + M

• In the presence of UHCs, lesser O3 is formed due to the competition from
UHCs for the O atoms.  O3 oxidizes NO to NO2.

O3 + NO →→ NO2 + O2
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NO OXIDATION BY PEROXY RADICALS

ICOPS-2001-12

          University of Illinois
  Optical and Discharge Physics

• Peroxy radicals (R-OO) are produced by hydroxy initiated reactions with
propene.  These radicals oxidize NO to NO2.

R−−OO•• + NO →→ NO2 + R−−O••

• The products of the decomposition of alkoxy radicals (R−−O••) then react with
O2 to produced HO2.  This results in the further oxidation of NO.
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NO DENSITIES: WITH/WITHOUT C3H6
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• In the presence of UHCs, NO conversion significantly increases mainly due
to oxidation by the peroxy radicals and HO2.  Some NO is also converted
into nitrates and nitrites.

R−−OO•• + NO →→ NO2 + R−−O••

• As NO is depleted at small radii of the streamer, diffusion of NO from outer
regions replenishes NO, thereby enabling further conversion by radicals.

T
 (

s)

7x1014

4x1015

NO (cm-3)

0 0.05 0.10 0.15 0.20
R (cm)

10-6

10-5

10-4

10-3

10-2
Without C3H6

0 0.05 0.10 0.15 0.20
R (cm)

10-6

10-5

10-4

10-3

10-2

T
 (

s)

With C3H6



NO2 DENSITIES: WITH/WITHOUT C3H6
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• Since UHCs provide extra reaction channels for the conversion of NO to
NO2, larger densities of NO2 are achieved.

• NO2 undergoes reactions with HO2 to from HNO2 and with OH to form HNO3.

NO2 + HO2 →→ HNO2 + O2

NO2 + OH + M →→ HNO3 + M
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HNO2
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• HNO2 is produced by the reactions of NO with OH and by the reaction of
HO2 with NO2.

NO + OH + M →→ HNO2 + M
NO2 + HO2 →→ HNO2 + O2

• In the presence of UHCs, more HO2 is produced as a result of UHC initiated
reactions and so more OH is produced.  This increases HNO2 production.
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EFFECT OF H2O ON NOX REMEDIATION
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• H2O affects NOx remediation through the production of OH radicals.

• OH radicals not only react with NO directly but also initiate reactions with
C3H6 which result in the oxidation of NO to NO2.

NO + OH + M →→ HNO2 + M
OH + C3H6 →→ •••••• →→ peroxies + NO →→ NO2

0

50

100

150

200

0 2 4 6 8 10

% H2O

D
en

si
ty

 (
pp

m
) NO2

NO

360

365

370

5

6

7

8

9

10

0 2 4 6 8 10
% H2O

C
3H

6 
(p

pm
)

H
N

O
2,

 H
N

O
3 

(p
pm

)

HNO3

HNO2

C3H6



CONCLUDING REMARKS
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• A one-dimensional plasma chemistry simulation coupled with diffusion and
circuit model has been developed.

• NO conversion is increased due to diffusion of NO from unprocessed
volumes into the microstreamer and due to the diffusion of radicals from
the streamer to outer regions.

• C3H6 mainly acts as an oxidizing agent for NO (to convert it to NO2).

• The presence of C3H6 results in added consumption of O and OH in the
microstreamer due to which transport of these radicals to outer regions is
reduced.

• At higher energy depositions, advection is important and should be
considered.


