CONSEQUENCES OF SOOT PARTICLES ON THE PLASMA REMEDIATION OF NO_X IN THE PRESENCE OF HYDROCARBONS^{*}

Khaled Hassouni LIMHP, CNRS-UPR1311, Universite Paris Nord, Villetaneuse, France.

> Rajesh Dorai and Mark J. Kushner University of Illinois Department of Electrical and Computer Engineering Urbana, IL 61801

Email : Khaled Hassouni - hassouni@limhp.univ-paris13.fr Mark J. Kushner - mjk@uiuc.edu Rajesh Dorai - dorai@uiuc.edu

June 2000

* Work supported by Ford Motor Company and by UIUC-CNRS "Development of Novel Techniques to Remove and Recover Hazardous Air Pollutants from Gas Streams"

AGENDA

- NO_x A BRIEF INTRODUCTION
- ROLE OF PLASMA IN NO_x REMEDIATION
- IMPORTANCE OF UNBURNED HYDROCARBONS (UHC) IN NO_{X} REMEDIATION
- SURFACE REACTIONS OF NO_X ON SOOT PARTICLES AND THEIR IMPLICATIONS ON THE OVERALL PLASMA CHEMISTRY
- CHARGING OF SOOT PARTICLES
- CONCLUSIONS

University of Illinois Optical and Discharge Physics

$\mathbf{NO}_{\mathbf{X}}$ - THE NEED FOR ITS REMOVAL

- The Environmental Protection Agency (EPA) has tracked the emissions of six major pollutants [CO, lead, nitrogen oxides (NO_x), particulate matter, SO_x and volatile organic compounds] since 1970. All emissions have significantly decreased except for NO_x which has increased by 10%. (EPA, 1998)
- Harmful effects of NO_x.
 - Formation of Ozone
 - Eutrophication of water bodies
 - Visibility degradation
- Major sources of NO_x
 - Automotives
 - Gas Turbines

- Acid deposition
- Inhalable fine particles

- Electric utilities
- Cement Manufacturing industries

University of Illinois Optical and Discharge Physics

PLASMA REMEDIATION OF NO_X USING DBDs

- Dielectric barrier discharges (DBDs) are well suited for the generation of gasphase radicals at atmospheric pressures.
- Electron impact processes in DBDs produce atoms and reactive radicals which initiate the plasma chemistry.

DESCRIPTION OF GLOBAL-KIN

- GLOBAL-KIN is a spatially homogeneous plasma chemistry simulation coupled with circuit and surface reaction modules.
- The model uses a lookup table generated by an offline Boltzmann solver to obtain the reaction rate coefficients for e-impact reactions.

University of Illinois Optical and Discharge Physics

REACTION MECHANISMS : NO_X , C_3H_6 (PROPENE)

- In the presence of UHCs, the primary reaction is oxidation of NO by the peroxy radicals.
- The subsequent formation of HO₂ from this reaction scheme results in further oxidation of NO to NO₂

University of Illinois Optical and Discharge Physics

REACTION MECHANISMS : NO_X , C_3H_8 (**PROPANE**)

- The initiating reaction with propane is an abstraction by OH. The resulting radicals then react with O₂ to form the peroxy radicals.
- These peroxy radicals then react with NO to convert it to NO₂.

EFFECT OF SOOT PARTICLES ON NO_X REMEDIATION

- Soot particles in diesel exhausts are typically 100 nm in diameter with 87-95% carbon, 1% hydrogen and 6-11% oxygen.
- The radicals produced in the plasma diffuse to the soot and react on the surface.

SOOT OXIDATION

- The soot modifies the bulk gas chemistry by consuming the radicals produced in the plasma.
- Parameterizations were performed on the initial soot diameter, density of particles, reaction probabilities on soot surfaces and energy deposition.
- Base case conditions
 - T=180°C , P=1 atm, N₂/O₂/H₂O/CO₂=79/8/6/7
 - CO=400 ppm, NO=260 ppm, H₂=133 ppm,
 - $C_3H_6=500 \text{ ppm}, C_3H_8=175 \text{ ppm}^-$
 - d_{soot}=100 nm
 - d_0 = diameter of the spherules inside the soot=20 nm
 - $\rho_{soot} = 10^8 \text{ cm}^{-3}$
 - Fractal dimension of the soot=2.8

SOOT OXIDATION MODEL

- The region surrounding the soot is divided into two zones :
 - Diffusion regime
 - Homogeneous Bulk Plasma
- Species that react on the soot surface diffuse through the boundary layer.
- The boundary layer thickness, δ , is obtained from the Reynolds number. For low *Re*, $\delta \approx d_s/2$
- The diffusing species have a linear profile in the diffusion regime.

PLASMA CHEMISTRY - INITIATOR RADICALS : N, OH, O

- Peak $n_e \approx 10^{13}$ cm⁻³ and $T_e \approx 3$ eV are observed with $E_{dep} \approx 38$ J/L.
- The processes that trigger the plasma chemistry are electron impact dissociation of N₂, O₂ and H₂O producing N, O and OH.

EFFECT OF INITIAL SOOT DIAMETER

With surface reactions, the NO_x composition in the gas-phase is significantly modified. NO/NO₂ increases with increasing soot diameter due to the reaction NO₂ + Su → NO_{2 (adsorbed)} → NO + CO

EFFECT OF ENERGY DEPOSITION

- With increasing energy deposition, NO_x remediation improves in the presence of soot.
- NO is not completely removed due to the conversion of NO₂ to NO on soot.

SOOT OXIDATION

 30% soot oxidation is achieved at high energy deposition due to

$$Su_{(adsorbed O)} \rightarrow Su + \underline{CO}$$

 $Su_{(adsorbed OH)} \rightarrow Su + H_2 + \underline{CO}$

 $Su_{(adsorbed NO2)} \rightarrow Su + NO + \underline{CO}$

- This oxidation is only partial since the product is CO and not CO₂.
 - CO poisonous
 - CO₂ greenhouse gas

ELECTRON ATTACHMENT TO SOOT

- Electron attachment to soot was significant only for $d_s \ge 150$ nm and $n_p \ge 10^9$ cm⁻³.
- Peak electron densities decreased by 5% and electron temperatures were slightly higher to increase ionization to compensate for loss to soot.
- Under normal operating conditions, (100 nm and 10⁸ cm⁻³ particle densities) electron attachment is not significant and can be neglected.

CONCLUSIONS / KEY POINTS

- Soot chemistry significantly affects the NO_x composition in plasma remediation of NO_x.
- Soot particles are oxidized by plasmas with primary products CO, H_2 and NO.
- Electron attachment to soot is not significant at the normal operating conditions (10⁸ cm⁻³ and 100 nm).
- Water adsorption on the soot surface can significantly affect the soot properties. Future studies will investigate these effects.