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INTRODUCTION

• The reliability of plasma processing equipment can be considerably improved
using feedback control.

• To aid in control strategy refinement and controller design, we have recently
developed a computational tool called the Virtual Plasma Equipment Model
(VPEM).

• It was demonstrated that controllers designed using response surface (RS)
based techniques can stably control actuator drifts and external perturbations.

• The issues that are addressed in this talk are:

• Validation of the VPEM results against experiments,

• Use of the VPEM to investigate feedback control problems of practical
interest,

• Improvement of controller design.
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• An actuator model, the HPEM, a sensor module and a programmable 
  controller are connected to form a feedback control loop. 
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• To validate the VPEM, we simulated  
the control experiments conducted 

   at the Univ. of Wisconsin (M. Sarfaty 
  et al., ECS Proceedings, pg. 94, 1997.)

• These experiments have been done 
in the magnetized ICP reactor shown 
here.

• The operating conditions are:

Gas Mixture: Cl2/Ar = 96/4
Pressure: 4 mTorr
Gas flow rate: 30 sccm
ICP power: 1000 W
Applied voltage: 50-180 V
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• Etch rate was controller in the 
experiment using chuck power.
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• As in the experiment, we designed a 1-input 1-output controller with etch rate 
(ER ) as the sensor.

• The ER has been computed using 
Dane & Mantie’s expression:

• Instead of chuck power, we have
   used applied voltage (which is 

proportional to chuck power) as 
   the actuator.
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• Cl2/Ar=96/4, 4 mTorr, 1000 W. 
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• With a Proportional Integro-Differential (PID) controller, the ER oscillates many 
times before settling down to the specified value.
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• There is also a delay in response after the step change in input signal.
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Experiment* Simulation

• Cl2/Ar=96/4, 4 mTorr, 1000 W. 

 * M. Sarfaty et al., ECS Proceedings, pg. 94, 1997.



CONTROL USING PID-FF CONTROLLER

Optical & Discharge Physics
University of Illinois

IEEE98_P2_F8

• Cl2/Ar=96/4, 4 mTorr, 1000 W. 

 * M. Sarfaty et al., ECS Proceedings, pg. 94, 1997.

• When a feed forward contribution (computed using the response surface 
shown earlier) is added, the oscillations reduce considerably in the sensor 
signal.

• The response is also much faster.
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5

4

3

2

1

0

0 100 200 300
Time (s)

Set Point

Actual

5

4

3

2

1

0

0 100 200 300
Time (s)

Set
Point

Actual



CONTROL USING PID-FF CONTROLLER

Optical & Discharge Physics
University of Illinois

IEEE98_P2_F8

• Cl2/Ar=96/4, 4 mTorr, 1000 W. 

 * M. Sarfaty et al., ECS Proceedings, pg. 94, 1997.

• When a feed forward contribution (computed using the response surface 
shown earlier) is added, the oscillations reduce considerably in the sensor 
signal.

• The response is also much faster.

Experiment* Simulation
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• Etch rate in Cl2 chemistries is a function of:   1. Ion flux to substrate,
  2. Cl flux to substrate,
  3. Ion energy.

• We consider polysilicon etching in
  an ICP reactor.

• Ar/Cl2 = 70/30, 150 sccm, no rf bias.

• Sensors: 
•  Total ion flux at S1 (e.g.,

       Sobolewski, APL 72, 1146 (1998)],

•  Cl* density using OES from S2.

• Actuators: 
•  Inductive power (300-500 W),
•  Pressure (15-25 mTorr).
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• Ar/Cl2 = 70/30, 150 sccm, no rf bias.
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• Increase in power deposition causes more ionization and excitation, which 
enhances the Cl* density and total ion flux to the substrate.

• Since the plasma is more collisional at higher pressures, ion velocity and 
hence ion flux is smaller.

• Cl* density increases slightly with pressure because the number of Cl that can
   be excited is larger.
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DESIGN OF CONTROLLERS

• We assume that we have a 2-input 2-output system.

• The quadratic fit to the response surface is
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 where (x1,x2) are the inputs (actuators) and (y1,y2) are the outputs (sensors).

• To design the controller, we consider a small change (dx1,dx2) in the actuators.

• The effect on the sensors is
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• Taking inverse of Eq. (2),
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• At T=5, we artificially increase the Cl   Cl2 sticking coefficient at the wall to 
simulate a change in wall conditions. 

• This decreases the Cl* density because of enhanced loss of Cl at the walls and 
decreases ion flux to substrate because the gas becomes more electro-
negative.

• The RS based controller increases the pressure and power until the sensors 
return to their original values.
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• To control change in wall conditions, we also used an adaptive controller. 

• Using random measurements near the operating point, the adaptive algorithm 
adjusted the coefficients of the RS-based model to better represent the actual 
situation.

• As shown below, the adaptive controller is able to bring the sensors back to 
their original values much more quickly.
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CONCLUSIONS

• A computational plasma equipment model (VPEM) has been used to evaluate
feedback control strategies and controller designs.

• In agreement with experiments, it was found that a feed-forward contribution to
a PID controller can reduce controller response time and eliminate
unnecessary oscillations.

• The VPEM was also used to investigate the control of Cl* density and total ion
flux to the substrate in an ICP reactor using inductive power and gas pressure
as actuators.

• It was demonstrated that controllers based on response surfaces (RS) can
stably control external perturbations and long term changes in reactor
conditions.

• The functionality of the RS-based controllers can be considerably improved by
including an adaptive component that tunes the controller coefficients to better
represent the operating conditions.


