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• External circuitry significantly effects the plasma characteristics and the 
performance of rf plasma processing reactors.

• A plasma equipment simulation, consisting of a coupled plasma reactor model 
and a circuit model, has been developed to investigate the interaction of 
plasmas and circuits.

• In this talk, we describe the model and use it to study relevant issues in 
asymmetric capacitive discharges and inductively coupled plasmas (ICP). 

• Electrode currents generally have significant amplitude at higher harmonics 
due to the nonlinear nature of the sheaths.

• Nonlinear sheaths also lead to rf source interaction which can produce results 
that are significantly different than due to the sum of individual sources.

• Electrical and plasma characteristics sensitively depend on source frequency 
and voltage waveform, which can be used as actuators to control plasma 
processes. 
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•  Our computational platform consists of the coupled Hybrid Plasma Equipment 
Model (HPEM) and a circuit model.

•  The circuit model uses intermediate results from the HPEM to compute 
voltages (dc, fundamental and harmonics) at electrodes.
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•  The Hybrid Plasma Equipment Model (HPEM) is our general plasma 
equipment simulation and it consists of three coupled modules.

•  In the first module, inductive electromagnetic fields are computed and coil 
circuitry is simulated.

•  The second module computes electron transport coefficients and sources for 
electron impact reactions using either (1) a Monte Carlo simulation or (2) by 
solving electron energy equation in conjunction with the Boltzmann equation.

•  The third module computes particle densities, fluxes and temperatures, and 
also the electrostatic fields.

•  The three modules are coupled and they are iterated until quasi-steady state 
conditions are obtained.

•  The HPEM is linked to an extensive chemical and physical database.

•  In the past, the HPEM has been usd to model capacitive discharges, ICPs, dc 
plasma devices and many other plasma based systems.
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•  At the end of each HPEM iteration, the reactor is replaced with an equivalent 
circuit consisting of sheaths at all important reactor surfaces and effective 
resistors to represent the bulk plasma.

•  Each sheath is treated as a nonlinear circuit element whose V-I characteristics 
are governed by the Riley’s sheath model.

•  The nonlinear sheath elements are connected to the external circuitry as 
shown on the next transparency.

•  The circuit is general enough that most external components and stray 
elements can be approximated.

•  This nonlinear circuit is solved using an implicit time integration scheme until 
all voltages and currents reach steady-state.

•  The resulting voltages (dc, fundamental and harmonics) at the electrodes are 
used as boundary conditions for the next HPEM iteration.
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•  The reactor and circuitry are replaced by the following equivalent circuit.
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•  We first explore plasma-circuit interaction in the capacitively coupled GEC 
reference cell.

• Sources and blocking capacitors have been connected to both electrodes.
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•  Ar, 100 mTorr, V1 = 100 V, V2 = 0 V.
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• A negative dc voltage appears across the capacitor C1 (dc bias) to balance 

currents through the powered and grounded surfaces.

• The sheath currents are fairly nonlinear with large higher harmonics.
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• Ar, 100 mTorr, V1 = 100 V, V2 = 0 V, 13.56 MHz.



EFFECT OF APPLIED VOLTAGE

Optical & Discharge Physics
University of Illinois

WISC98_F10

• At 100 mTorr in Ar, the sheath-circuit model correctly predicts the dc bias for 
applied voltages between 75-150 V.

• As applied voltage is increased, the dc bias amplitude increases to balance the 
disproportionate increase in the two electrodes’ electron current.

• Ar, 100 mTorr, V2 = 0 V, 13.56 MHz.
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• The sheath-circuit model is able to correctly predict the dc bias for higher 
pressures as well.

• As pressure increases, the plasma gets better confined between the electrodes, 
the discharge becomes more symmetric and the dc bias amplitude decreases.

• Ar, V1 = 100 V, V2 = 0 V, 13.56 MHz.
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EFFECT OF GAS PRESSURE ON PLASMA DENSITY
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• As pressure increases, the plasma gets better confined in the inter-electrode 
region.

• Ar, V1 = 100 V, V2 = 0 V, 13.56 MHz.
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EFFECT OF APPLIED VOLTAGE ON ELECTRODE CURRENT
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• As the applied voltage is increased, more stochastic and ohmic heating takes 
place.

• The resulting electron density and electrode currents are therefore larger.

• Ar, 100 mTorr, V1 = 100 V, V2 = 0 V, 13.56 MHz.
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• Total current through electrodes and walls increases with frequency because of 
enhancement of displacement current.

•  Larger current leads to more electron heating and larger electron densities.
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• Electron temperature decreases with 
frequency, resulting in better 
electron confinement between 
electrodes and smaller dc biases.

• Ar, 100 mTorr, V1 = 100 V, V2 = 0 V.
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• Electron density and electrode currents depend on frequency in the same 
manner in Ar/CF4 as in Ar.

• The dc voltages however vary non-
monotonically with frequency in 
Ar/CF4 because the electron 

temperature dependence on 
frequency is different.

• Ar/CF4 = 80/20, 100 mTorr, V1 = 100 V, V2 = 0 V.
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•  Since plasmas are nonlinear, seemingly similar external circuitry may lead to 
different plasma characteristics.

• In the circuits below, the two matching networks are exact (T-Π) transform of 

each other at the fundamental frequency.
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EFFECT OF MATCHING NETWORK - II
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•  The two circuits look different to the plasma at other frequencies:
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•  Since dc bias develops due to the nonlinear nature of the plasma, it is different 
with the two matching networks.

•  The resultant plasma characteristics are consequently different as well.
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ARBIRARY VOLTAGE WAVEFORMS
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! By varying the rf bias voltage waveform, one can control the dc bias, sheath

voltage, plasma characteristics and the ion energy distribution at the substrate.
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PRIMARY ELECTRODE SHEATH CURRENTS AND VOLTAGES
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EFFECT OF WAVEFORM ON PLASMA PARAMETERS
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• Waveforms which have higher first harmonic lead to larger dc biases.

• Higher first harmonics also lead to enhanced power deposition in the plasma 

and higher electron densities.

• Since displacement current increases with frequency, waveforms with larger 

amplitudes at higher harmonics result in larger plasma densities. 
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EFFECT OF HIGHER HARMONICS
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• Electron density is larger and Te is smaller for waveforms with larger higher

  harmonics.
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CONSEQUENCES OF SOURCE INTERACTION - I
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• In these results, a 13.56 MHz source (V1=100 V) is connected to E1 while a 

27.12 MHz source is connected to E2.

• Electron density increases with V2 (27.12 MHz) due to the enhancement of 

displacement currents. 10
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• The dc bias magnitude on E1 
decreases with increasing V2 (27.12 

MHz) due to source interactions.

• Ar, 100 mTorr, V1 (13.56 MHz) = 100 V.



CONSEQUENCES OF SOURCE INTERACTION - II
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• In these results, we show the sheath voltages 
and currents for only the 13.56 MHz source, 
27.12 MHz source and their combination.

• Sheath voltages at E1 and E2 are primarily 
governed by the sources connected to them.

• The sheath voltage at the grounded wall is, 
however, in the linear regime and the two 
sources interact increasing the sheath 
voltage drop.

• DC bias at E1, which is the difference 
between the dc sheath voltage at E1 and 
wall, therefore decreases in magnitude.
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INDUCTIVELY COUPLED PLASMA (ICP) SOURCE
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• We next consider the effects of rf bias frequency and rf source interaction in an 
ICP reactor.

• For circuit simulation, the dielectric window is replaced by effective capacitors.
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• Ar, 20 mTorr, 500 W, V1 (13.56 
MHz) = 100 V.



TYPICAL SHEATH VOLTAGES AND CURRENTS
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• Most of the rf current flows out through the grounded surfaces.
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• Sheath voltage is larger near the 
grounded walls at 10 MHz because 
of low plasma density (i.e., high 
impedance) adjacent to them.

• Ar, 20 mTorr, 500 W, V1 (10 MHz) = 100 V.



EFFECT OF RF BIAS SOURCE FREQUENCY

Optical & Discharge Physics
University of Illinois

WISC98_F26

• Since plasma is generated by the inductive source, rf bias frequency does not 
significantly affect the electron density.

• Displacement current through the sheaths increases with bias frequency, 
enhancing the total sheath current.
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• Ar, 20 mTorr, 500 W, V1 = 100 V.



WHY DOES RF BIAS FREQUENCY STRONGLY EFFECT DC BIAS?
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• Most of the current through the substrate is conduction while that at grounded 
surfaces is displacement.

• An increase in rf bias frequency, therefore, decreases the sheath impedance 
more strongly at grounded surfaces than at the substrate.

• The resulting disproportional change in sheath voltage at different surfaces 
modifies the dc bias at the substrate.
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• Ar, 20 mTorr, 500 W, V1 (30 MHz) = 100 V.



DEPENDANCE OF DC BIAS ON COIL DESIGN
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• The dc bias is a global characteristic of rf discharges, which develops to 
balance rf current through the reactor surfaces.

• To the degree that the location of the coils governs the uniformity of the plasma, 
the location of the coils also governs proportions of current to surfaces. 

• Since the rf impedance of the window is large, a shift in the plasma to larger 
radii allows more current to be collected by the walls, and makes the dc bias 
more negative.

• Ar, 20 mTorr, 500 W, V1 = 100 V.
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RF SOURCE INTERACTION IN ICP REACTOR
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• In these results, a 13.56 MHz source (V1 = 100 V) is connected to S1 while a 

27.12 MHz source is connected to S3.
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• Sheath voltage at S1 is mainly 

governed by the rf bias source.

• The two rf sources, however, interact 
at the grounded surface S2 and 

change the sheath voltage there.

• Dc bias at S1 is therefore modified.

• Ar, 20 mTorr, 500 W, V1 (13.56 MHz) 
= 100 V.
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• To investigate plasma-circuit interaction, a coupled plasma equipment and 
circuit model has been developed.

• In this talk, results from the model were used to investigate the consequences 
of applied voltage and operating conditions on plasma and electrical 
characteristics of asymmetric capacitive discharges and ICPs.

• Electrode currents were generally found to have significant amplitude at higher 
harmonics due to the nonlinear nature of the sheaths.

• Nonlinear sheaths also led to rf source interaction, which produced results that 
were significantly different than due to the sum of individual sources.

• Electrical and plasma characteristics sensitively depend on source frequency 
and voltage waveform, which can be used as actuators to control plasma 
processes.

• Inductive power deposition profile governs the distribution of current through 
different surfaces in ICPs, and influences the electrical characteristics of the 
discharge.
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• Transparencies for this talk can be downloaded from:

http://uigelz.ece.uiuc.edu/GM_webpages/Shahid/Papers/wisc98.pdf

• Reprints and manuscripts of some relevant papers are also available:

S. Rauf and M. J. Kushner, J. Appl. Phys. 83 , 5087 (1998).
(http://uigelz.ece.uiuc.edu/GM_webpages/Shahid/Papers/paper12.pdf)

S. Rauf and M. J. Kushner, submitted to IEEE Trans. Plasma Sci.
(http://uigelz.ece.uiuc.edu/GM_webpages/Shahid/Papers/paper15.pdf)


