AVS 47th International Symposium Boston, MA October 2, 2000

Electron Transport and Power Deposition in Magnetically Enhanced Inductively Coupled Plasmas

Ronald L. Kinder and Mark J. Kushner University of Illinois, Urbana-Champaign

> e-mail : rkinder@uiuc.edu mjk@uiuc.edu http://uigelz.ece.uiuc.edu

Work Supported by : AMAT, SRC, NSF and DARPA/AFOSR

AGENDA

- Motivation
- Plasma Modeling Hybrid Plasma Equipment Model (HPEM)
- Trikon Mori Helicon Source
 - Validation
 - Effects of TG Mode
- Analysis of Helicon Component
- Non-Collisional Heating
 - Axial Acceleration
 - Phase Matching
- Conclusions

MOTIVATION FOR MAGNETICALLY ENHANCED ICPs

- In order to maintain process uniformity over large areas (> 300 mm) efficient new plasma sources are being developed.
- It is often desirable to produce plasmas in the "volume" of large reactors. This is difficult to accomplish using ICPs due to their finite skin depth.
- Magnetically Enhanced Inductively Coupled Plasma (ME-ICPs) sources are being investigated due to their high ionization efficiency and their ability to deposit power within the volume of the plasma.
- The location of power deposition can substantially vary depending on the mode of operation and reactor conditions.

PROPERTIES OF MAGNETICALLY ENHANCED ICPs

- The coupling of electromagnetic fields to the plasma occurs through two channels.
 - Helicon Wave
 Electrostatic Wave (TG)
- Helicon waves have the property that their parallel phase velocities can be matched to the thermal velocities of 20 200 eV electrons.
- Chen and Boswell have suggested Landau damping as a collisionless heating mechanism. If the wave grows fast enough, it can trap thermal electrons and accelerate them to the phase velocity.
- More recently it has been suggested that much of the electron heating comes from the TG component of the wave.
- Here we report on power deposition on MEICPs by these mechanisms.

- The base two-dimensional HPEM consists of an electromagnetics module (EMM), an electron energy transport module (EETM), and a fluid kinetics simulation (FKS).
- A full tensor conductivity was added to the EMM to calculate 3-d components of the inductively coupled electric field based on 2-d applied magnetostatic fields.
- The plasma current in the wave equation is addressed by a cold plasma tensor conductivity.
- Particle transport:

Neutrals:	Continuity, Momentum, Energy
lons:	Continuity, Momentum, Energy
Electrons:	Drift Diffusion, Energy
EEDF:	Monte Carlo Simulation

• Potentials: Poisson Equation

 If plasma neutrality is not enforced, the divergence term in the wave equation must be included.

$$\nabla \left(\frac{1}{m} \nabla \cdot \overline{E}\right) - \nabla \cdot \left(\frac{1}{m} \nabla \overline{E}\right) = w^2 e \overline{E} - i w \overline{\overline{S}} \cdot \overline{E}$$

TG Wave Helicon Wave

• The divergence of the electric field is equal to the wave perturbed electron density.

$$\nabla \cdot \overline{E} = \frac{\mathbf{r}}{\mathbf{e}} = \frac{q\Delta n_e}{\mathbf{e}} \qquad \text{where,} \quad \Delta n_e = \frac{-\nabla \cdot \left(\frac{\overline{\mathbf{s}} \cdot E}{q}\right)}{\left(\mathbf{w}_{Damp} + i\mathbf{w}\right)}$$

• The gradient of the perturbed electron density, represents an effective current sink due to the TG mode.

TRIKON MORI[™] 200 PLASMA TOOL

• A commercial Trikon Technologies, Inc., Pinnacle 8000 plasma tool was used to validate the model.

ANALYSIS OF TRIKON PLASMA TOOL: VALIDATION

- As static magnetic field increases, the ion saturation current peaks further downstream. Simulations show a similar trend for the ion profile.
- With increasing magnetic field, electric field propagation progressively follows magnetic flux lines and significant power can be deposited downstream.

EFFECTS OF TG MODE ON PROPAGATION

- At 300 G, TG mode is strongly damped at the dielectric-plasma surface. The percent of perturbed electrons in this region can reach 1%.
- The TG mode couples power more efficiently per electron produced. At a constant input power, this results in a higher temperature and lower plasma density.

EFFECTS OF TG MODE ON PROPAGATION

- Initial studies indicate that the effect of the TG mode is to restructure the power deposition profile near the coils.
- However, the propagation of the helicon component is little affected, particularly at large magnetic fields where the TG modes is damped.

ANALYSIS OF PLASMA TOOL : POWER

- For Ar/Cl₂, power deposition, at high magnetic fields, cycles back upstream, resembling an ICP.
- At high enough magnetic fields, the electric field wavelength is larger than the reactor and is unable to sustain a standing wave pattern.

Ar/Cl₂ 80:20, 10 mTorr, 1 kW, 50 sccm

UNIVERSITY OF ILLINOIS OPTICAL AND DISCHARGE PHYSICS

RKINDER_AVS_2000_11

ANALYSIS OF HELICON COMPONENT: WAVELENGTH

 Neglecting the TG mode, the ability to deposit power downstream is limited by the wavelength of the helicon-like wave.

COLLISIONLESS HEATING : AXIAL ACCELERATION

- The electron energy distribution (EED) was obtained from the EMCS. The tail of the EEDF increases with increasing distance from the coil.
- The axial component of the electromagnetic field is responsible for most of the power deposition.

COLLISIONLESS HEATING : PRESSURE

- As the pressure is decreased, the collisionless heating mechanisms become more dominant.
- There is significant heating in the downstream region.

RADIALLY AVERAGED EEDF

• Ar, 1 kW, 50 sccm, 300 G

PHASE MATCHING

- The parallel phase velocity of the electric fields is linearly proportional to the input rf frequency.
- As the frequency is decrease non-collisional heating throughout the reactor becomes more prevalent due to better phase matching with thermal electrons.

RADIALLY AVERAGED EEDF

PHASE MATCHING

- Phase matching of the parallel phase velocity with the thermal velocity is required for acceleration.
- At lower frequencies the fraction of electrons in phase with the propagating electric field is larger.

PERCENTAGE OF ELECTRONS IN PHASE

• Ar, 1 kW, 50 sccm, 300 G, 2 mTorr

- MEICPs are being studied for their ability to deposit power within the volume of the plasma.
- Study effects of TG mode on power deposition and ability for the helicon wave component to produce non-local heating.
- Initial studies indicate that the effect of the TG mode is to restructure the power deposition profile near the coils.
- However, the propagation of the helicon component is little affected, particularly at large magnetic fields where the TG modes is damped.
- For conditions where the TG mode is surpressed, the helicon component deposits the majority of the power within the volume of the plasma.
- At low pressures and rf frequencies, non-collisional heating becomes more prevalent since the thermal velocities match input rf phase velocity.