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MOTIVATION FOR MAGNETICALLY ENHANCED ICPs

l In order to maintain process uniformity over large areas (> 300 mm) 
  efficient new plasma sources are being developed.

l It is often desirable to produce plasmas in the “volume” of large 
  reactors. This is difficult to accomplish using ICPs due to their finite 
  skin depth.

PLASMA

SUBSTRATE

SOLENOID

B-FIELD ANTENNA
E&M 
WAVE

l Magnetically Enhanced Inductively 
  Coupled Plasma (ME-ICPs) sources are 
  being investigated due to their high 
  ionization efficiency and their ability to 
  deposit power within the volume of the 
  plasma.

l The location of power deposition can 
  substantially vary depending on the mode 
  of operation and reactor conditions.
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PROPERTIES OF MAGNETICALLY ENHANCED ICPs
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l The coupling of electromagnetic fields to the plasma occurs through 
  two channels.

l Helicon Wave l Electrostatic Wave (TG)

l Helicon waves have the property that their parallel phase velocities can
  be matched to the thermal velocities of 20 - 200 eV electrons.

l Chen and Boswell have suggested Landau damping as a collisionless
  heating mechanism. If the wave grows fast enough, it can trap thermal
  electrons and accelerate them to the phase velocity.

l More recently it has been suggested that much of the electron heating 
  comes from the TG component of the wave.

l Here we report on power deposition on MEICPs by these mechanisms.
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HYBRID PLASMA EQUIPMENT MODEL

l The base two-dimensional HPEM consists of an electromagnetics
  module (EMM), an electron energy transport module (EETM), and a fluid
  kinetics simulation (FKS).

l A full tensor conductivity was added to the EMM to calculate 3-d
  components of the inductively coupled electric field based on 2-d
  applied magnetostatic fields.

l The plasma current in the wave equation is addressed by a cold
  plasma tensor conductivity.

l Particle transport:
Neutrals: Continuity, Momentum, Energy
Ions: Continuity, Momentum, Energy
Electrons: Drift Diffusion, Energy
EEDF: Monte Carlo Simulation

l Potentials: Poisson Equation
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HPEM ELECTROMAGNETICS : TG MODE
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• If plasma neutrality is not enforced, the divergence term in the wave
equation must be included.

! The divergence of the electric field is equal to the wave perturbed
electron density.

• The gradient of the perturbed electron density, represents an
   effective current  sink due to the TG mode.
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TRIKON MORITM 200 PLASMA TOOL
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l  A commercial Trikon Technologies, Inc., Pinnacle 8000 plasma tool was
   used to validate the model.
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l As static magnetic field increases, the ion saturation current peaks
  further downstream. Simulations show a similar trend for the ion profile.

l With increasing magnetic field, electric field propagation progressively
  follows magnetic flux lines and significant power can be deposited
  downstream.

l Ar, 2.3 mTorr, 1 kW, 50 sccm

ANALYSIS OF TRIKON PLASMA TOOL: VALIDATION

l Ar, 2.3 mTorr, 1 kW
  (Trikon Technologies, Inc.)
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l At 300 G, TG mode is strongly damped at the dielectric-plasma surface.
  The percent of perturbed electrons in this region can reach 1%.

l The TG mode couples power more efficiently per electron produced. At a
  constant input power, this results in a higher temperature and lower plasma
  density.

EFFECTS OF TG MODE ON PROPAGATION
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l Initial studies indicate that the effect of the TG mode is to restructure the
  power deposition profile near the coils.

l However, the propagation of the helicon component is little affected,
  particularly at large magnetic fields where the TG modes is damped.

EFFECTS OF TG MODE ON PROPAGATION
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l Ar/Cl2 80:20, 10 mTorr,

  1 kW, 50 sccm

l For Ar/Cl2, power deposition, at high magnetic fields, cycles back

  upstream, resembling an ICP.

l At high enough magnetic fields, the electric field wavelength is larger than
  the reactor and is unable to sustain a standing wave pattern.
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ANALYSIS OF PLASMA TOOL : POWER
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l Ar/Cl2 80:20, 10 mTorr, 50 sccm

l Neglecting the TG mode, the ability to deposit power downstream is limited
  by the wavelength of the helicon-like wave.

l For an m = 0 mode,

ANALYSIS OF HELICON COMPONENT: WAVELENGTH
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COLLISIONLESS HEATING : AXIAL ACCELERATION

l Ar, 1 kW, 300 G, 2 mTorr

l The electron energy distribution (EED) was obtained from the EMCS.
  The tail of the EEDF increases with increasing distance from the
  coil.

l The axial component of the electromagnetic field is responsible for most
  of the power deposition.
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COLLISIONLESS HEATING : PRESSURE

l Ar, 1 kW, 50 sccm, 300 G

l As the pressure is decreased, the collisionless heating mechanisms
   become more dominant.

l There is significant heating in the downstream region.
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PHASE MATCHING

l Ar, 1 kW, 50 sccm, 300 G, 2 mTorr

l The parallel phase velocity of the electric fields is linearly proportional
  to the input rf frequency.

l As the frequency is decrease non-collisional heating throughout the
  reactor becomes more prevalent due to better phase matching with
  thermal electrons.
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27.1 MHz
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PHASE MATCHING
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l Phase matching  of the parallel phase velocity with the thermal velocity
  is required for acceleration.

l At lower frequencies the fraction of electrons in phase with the
  propagating electric field is larger.
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CONCLUSIONS
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l MEICPs are being studied for their ability to deposit power within the 
  volume of the plasma.

l Study effects of TG mode on power deposition and ability for the 
  helicon wave component to produce non-local heating.

l Initial studies indicate that the effect of the TG mode is to restructure
  the power deposition profile near the coils.

l However, the propagation of the helicon component is little affected,
  particularly at large magnetic fields where the TG modes is damped.

l For conditions where the TG mode is surpressed, the helicon 
  component deposits the majority of the power within the volume of the 
  plasma.

l At low pressures and rf frequencies, non-collisional heating becomes
  more prevalent since the thermal velocities match input rf phase
  velocity.


