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MOTIVATION FOR MAGNETICALLY ENHANCED ICPs

e In order to maintain process uniformity over large areas (> 300 mm)
efficient new plasma sources are being developed.

e It is Ooften desirable to produce plasmas in the “volume” of large
reactors. This is difficult to accomplish using ICPs due to their finite
skin depth

e Magnetically Enhanced Inductively \\\ B- FI!D//ANTENNA

Coupled Plasma (ME-ICPs) sources are WAVE |—|
being investigated due to their high : " SOLENOID
lonization efficiency and their ability to |:| "

deposit power within the volume of the — —
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SUBSTRATE

e The location of power deposition can
substantially vary depending on the mode
of operation and reactor conditions.
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PROPERTIES OF MAGNETICALLY ENHANCED ICPs

e The coupling of electromagnetic fields to the plasma occurs through
two channels.

e Helicon Wave e Electrostatic Wave (TG)

e Helicon waves have the property that their parallel phase velocities can
be matched to the thermal velocities of 20 - 200 eV electrons.

e Chen and Boswell have suggested Landau damping as a collisionless
heating mechanism. If the wave grows fast enough, it can trap thermal
electrons and accelerate them to the phase velocity.

e More recently it has been suggested that much of the electron heating
comes from the TG component of the wave.

e Here we report on power deposition on MEICPs by these mechanisms.
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HYBRID PLASMA EQUIPMENT MODEL

e The base two-dimensional HPEM consists of an electromagnetics
module (EMM), an electron energy transport module (EETM), and a fluid
Kinetics simulation (FKS).

e A full tensor conductivity was added to the EMM to calculate 3-d
components of the inductively coupled electric field based on 2-d
applied magnetostatic fields.

e The plasma current in the wave equation is addressed by a cold
plasma tensor conductivity.

e Particle transport:
Neutrals: Continuity, Momentum, Energy

lons: Continuity, Momentum, Energy
Electrons: Drift Diffusion, Energy
EEDF: Monte Carlo Simulation

e Potentials: Poisson Equation
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HPEM ELECTROMAGNETICS : TG MODE

. If plasma neutrality is not enforced, the divergence term in the wave
equation must be included.
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o The divergence of the electric field is equal to the wave perturbed
electron density.
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. The gradient of the perturbed electron density, represents an
effective current sink due to the TG mode.
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TRIKON MORIT™ 200 PLASMA TOOL

e A commercial Trikon Technologies, Inc., Pinnacle 8000 plasma tool was
used to validate the model.
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ANALYSIS OF TRIKON PLASMA TOOL: VALIDATION

e As static magnetic field increases, the ion saturation current peaks
further downstream. Simulations show a similar trend for the ion profile.

e With increasing magnetic field, electric field propagation progressively
follows magnetic flux lines and significant power can be deposited
downstream.
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EFFECTS OF TG MODE ON PROPAGATION

e At 300 G, TG mode is strongly damped at the dielectric-plasma surface.
The percent of perturbed electrons in this region can reach 1%.

e The TG mode couples power more efficiently per electron produced. At a
constant input power, this results in a higher temperature and lower plasma
density.
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EFFECTS OF TG MODE ON PROPAGATION

e INnitial studies indicate that the effect of the TG mode is to restructure the
power deposition profile near the coils.

e However, the propagation of the helicon component is little affected,
particularly at large magnetic fields where the TG modes is damped.

Power (wo/TG) Power (w/TG)

1.0 (W / cm3) 0.01 5x1012  (cm3) 5 x 1010

RKINDER_AVS 2000 10 @ Ar 10 mTOI‘I’, 1 kW, 50 SCCm, 300 G UNIVERSITY OF ILLINOIS



ANALYSIS OF PLASMA TOOL : POWER

e For Ar/Clo, power deposition, at high magnetic fields, cycles back

upstream, resembling an ICP.

e At high enough magnetic fields, the electric field wavelength is larger than
the reactor and is unable to sustain a standing wave pattern.
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ANALYSIS OF HELICON COMPONENT: WAVELENGTH

e Neglecting the TG mode, the ability to deposit power downstream is limited
by the wavelength of the helicon-like wave.
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COLLISIONLESS HEATING : AXIAL ACCELERATION

e The electron energy distribution (EED) was obtained from the EMCS.
The tail of the EEDF increases with increasing distance from the
coil.

e The axial component of the electromagnetic field is responsible for most
of the power deposition.
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COLLISIONLESS HEATING : PRESSURE

e As the pressure is decreased, the collisionless heating mechanisms
become more dominant.

e There is significant heating in the downstream region.
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PHASE MATCHING

e The parallel phase velocity of the electric fields is linearly proportional
to the input rf frequency.

e As the frequency is decrease non-collisional heating throughout the
reactor becomes more prevalent due to better phase matching with
thermal electrons.
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PHASE MATCHING

e Phase matching of the parallel phase velocity with the thermal velocity
IS required for acceleration.

e At lower frequencies the fraction of electrons in phase with the
propagating electric field is larger.

PERCENTAGE OF ELECTRONS IN PHASE
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CONCLUSIONS

e MEICPs are being studied for their ability to deposit power within the
volume of the plasma.

e Study effects of TG mode on power deposition and ability for the
helicon wave component to produce non-local heating.

e INnitial studies indicate that the effect of the TG mode is to restructure
the power deposition profile near the coils.

e However, the propagation of the helicon component is little affected,
particularly at large magnetic fields where the TG modes is damped.

e For conditions where the TG mode is surpressed, the helicon
component deposits the majority of the power within the volume of the
plasma.

e At low pressures and rf frequencies, non-collisional heating becomes
more prevalent since the thermal velocities match input rf phase
velocity.
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