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MOTIVATION FOR USING HELICON DISCHARGES

Due to their high ionization efficiency, high flux density and their ability to deposit
power within the volume of the plasma, helicon reactors are being developed for
downstream etching and deposition.

The power coupling of the antenna radiation to the plasma is of concern due to
issues related to process uniformity.

Operation of helicon discharges at low magnetic fields (< 100 G) is not only
economically attractive, but lower fields provide greater ion flux uniformity to the
substrate.

To investigate these issues, we have improved the electromagnetics module of
the HPEM to resolve the helicon structure of a m = 0 mode.

Results for process relevant gas mixtures are examined and the dependence on
magnetic field strength, field configuration, and power are discussed.
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HYBRID PLASMA EQUIPMENT MODEL

The base two-dimensional HPEM consists of an electromagnetics module
(EMM), an electron energy transport module (EETM), and a fluid kinetics
simulation (FKS).

Particle transport:
• Ions: Continuity, Momentum, Energy
• Electrons: Drift Diffusion, Energy

Potentials:
• Early Iterations: Ambipolar
• Late Iterations: Poisson
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COLD PLASMA CONDUCTIVITY TENSOR

•

•

Algorithms were developed to investigate helicon plasma tools using HPEM-2D. A
full tensor conductivity was added to the EMM to calculate 3-d components of the
inductively coupled electric field based on 2-d applied magnetostatic fields.
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HELICON TRANSITION - AZIMUTHAL ELECTRIC FIELD (Eθ)
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• At a critically low magnetic field, the azimuthal electric field remains inductively coupled
and a radially propagating wave dominates.

As magnetic fields are increased, standing wave patterns arise in radial direction and
the electric field begins to propagate in the axial direction.

Ar, 10 mTorr, 1 kW, 50 sccm•
(V / cm)15 0.15

Radians6.283 0

Eθ Phase
B = 40 G

Eθ Phase Eθ Phase Eθ Phase Eθ Phase
B = 80 G B = 150 GB = 20 GB = 10 G

•

RADIUS (cm)
0 1010

40

Coils

Glass

Substrate

Solenoid



AVS99_7

UNIVERSITY OF ILLINOIS
OPTICAL AND DISCHARGE PHYSICS

• The propagation of radial electric field Er is similar to azimuthal electric field Eθ.

Initially propagation is dominantly in the the radial direction, with a highly damped wave.
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• At low magnetic fields power deposition is inductively coupled and occurs near the coils.

As nodal structure develops in the azimuthal and radial fields, the skin depth of the
power deposition is increased to within the volume of the plasma.
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HELICON TRANSITION - POWER AND ELECTRON DENSITY



LOW FIELD DOWNSTREAM DENSITY PEAK
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Previous experiments using a Nagoya Type
III antenna (Chen and Chevalier) show a
small peak in the electron density in the
downstream region in low magnetic field
(20-60 G) regime.

•

• Ar, 5 mTorr, 1 kW, 50 sccm
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TRIKON MORITM 200 HELICON PLASMA SOURCE
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Measurements from a commercial Trikon
Technologies, Inc., Pinnacle 8000 helicon
source was used to validate model.
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ANALYSIS OF TRIKON HELICON TOOL : Eθ
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At low fields, the electromagnetic propagation is mainly radial, producing
standing wave pattern in the radial direction.

However as the field increases, propagation dominates in the axial direction,
shifting standing wave patterns in the direction of propagation.
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Similar effects can be seen in the radial electric field profile and propagation.

Antenna coupling seems to have a significant effect at higher magnetic fields.
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ANALYSIS OF TRIKON HELICON TOOL : Er
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Axial electric field propagation and wave pattern resembles radial electric fields.

As magnetic fields are increased, overall electric field propagation in the axial direction
dominates.

•

•

Ez Ez

ANALYSIS OF TRIKON HELICON TOOL : Ez
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As static magnetic field increases, ion saturation current peaks further downstream.
Simulations show a similar trend for the ion saturation profile.

For simulations at constant power, downstream peak decreases with increasing
static magnetic fields since plasma peaks at larger radius (i.e. larger plasma
volume).
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• Ar, 10 mTorr, 1kW, 50 sccm

ANALYSIS OF TRIKON HELICON TOOL : VALIDATION
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As the magnetic fields increase, axial propagation dominates depositing power in the
downstream region. An increase in ion current to the substrate comes at the loss of flux
uniformity.
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ANALYSIS OF TRIKON HELICON TOOL : POWER AND
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• Ar/ Cl2 (4:1), 10 mTorr, 50 sccm

B = 0 G B = 150 G B = 300G

As the magnetic fields increase, axial propagation dominates depositing power in the
downstream region.

However, for specific mixtures, at high enough magnetic fields the electric field wavelength
is larger than the reactor size, resembling ICP behavior.
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ANALYSIS OF TRIKON HELICON TOOL : Ar/Cl2
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CONCLUDING REMARKS
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Parametric studies using low magnetic fields show nodal behavior in the electric
field structure, thereby increasing the skin depth of the power deposition to within
the volume of the plasma.

As the magnetic field increases, axial propagation of electromagnetic fields
dominates with an increase in wavelength.

The transition from inductive coupling to helicon mode appears to occur when the
fraction of power deposited through the radial and axial fields dominates.

Simulations of the Trikon helicon source showed significant power deposition
downstream in the higher magnetic field regime, thereby shifting the location of
peak plasma density.

As static magnetic fields become large enough, the wavelength of the electric
fields is increased and power deposition resembles ICP.
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